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Abstract

Consider the following data fusion scenario: two datapets contain the same real-
world entities described using partially shared featuees, banking and insurance company
records of the same customer base. Our goal is to learn #&ielassthe cross product space of
the two domains, in the hard case in which no shared ID isablail-e.g. due to anonymiza-
tion. Traditionally, the problem is approached by first as$ding entity matching and subse-
qguently learning the classifier in a standard manner. Weeptesn end-to-end solution which
bypasses matching entities, based on the recently inteadooncept oRademacher obser-
vations(rados). Informally, we replace the minimisation of a losgroexamples, which re-
guires to solve entity resolution, by tequivalentminimisation of a (different) loss over rados.
Among others, key properties we show are (i) a potentiallyehsubset of these raddees not
require to perform entity matching, and (ii) the algorithm that prbly minimizes the rado
loss over these rados has time and space complegitiaderthan the algorithm minimizing
the equivalent example loss. Last, we relax a key assumpfidime model, that the data is
vertically partitioned among peers — in this case, we wouwltlaven know thexistenceof a
solution to entity resolution. In this more general settiegperiments validate the possibility
of significantly beating even theptimal peer in hindsight.

Keywords: entity resolution, distributed learning, Rademacheeolsions, square loss, Ridge
regularization.
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Figure 1: Schematic views of our settings, with= 3 peers. In both cases, some features (cyan)
are described in each peer (best viewed in color) and one #stemed features is a class. Non-
shared features are split among peers. A so-catitd samplesS is figured by the red rectangle.
Left in the vertical partitionVP) case, all peers see different views of the same exampledpbu
not know who is who among their datasets ("?”). Hence, eabtifbhe total sample is seen by one
peer.Right in the more general settin@j, it is not even known whether one example, viewed by
a peer, also exist in other peers’ datasets. In this case thay be a lot of missing datd |, but

it is not known which example has missing data.

1 Introduction

Learning from massively distributed data collections andtiple information sources has become
a pivotal problem, yet it faces critical challenges, amortgch is the fact that it relies on re-
constructing consistent examples from diverse featurssinlited between different data handling
peers Exhaustive search to solve this problem is simply not $t@Jaor communication efficient,
and sometimes not even accurate [11, 34].

— A key technical message of our paper is:

Entity resolution can be bypassed to carry out supervisarhiag almost as accurate as if its
solution were known.

A main motivation of this work comes from the reported expece that combining features
from different sources leads to better predictive power. ikstance, insurance and banking data
together can improve fraud detection; shopping records aeehplement medical history for es-
timating risk of disease [29]; joining heterogeneous daps$ prediction in genomics [16, 133];
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Peer 1 Peer 2

. shared . shared

T : T3 ¢ P : T3 ¢

ee 11 1 ¢ A1 1
e 111 1 ¢ 111 1

Table 1: A simple case of th&/P) setting, withp = 2 peers, with two shared variableg andc
(the class to predict). This toy example has binary desongeatures and a binary shared feature,
but this restriction does not need to hold in the general.daseexample, each shared feature can
be any categorical/ordinal feature, like “postcode”, “dgacket”, etc.

(1) Entity

Matching

peer 1 peer 2 peer 1 peer 2
(2) Data Fusion (2) Rado Fusion

[EERREERRR]

{

(3) Learning (3) Learning

Figure 2: Learning on top of ER (left) or with rados (right).

security agencies integrate various sources for terranselligence [28| O, 27].

Typical data fusion methods however rely on a known map batvwentities|[6],i.e., peers
have partially different views of theameexamples. Instead, we assume the datasets do not share
a common ID, as shown in Figuré @), left); that is, for example, the case when data collec-
tion of was performed independently by each peer, or wherceswere deliberately anonimized.
Entity resolution(ER), or entity matching [10], would be the traditional apach for reconciling
entities with no shared b It approximates aolIN operation, assuming that some of the attributes
are sharede.g, age-band gender postcodgetc.), and hence can be used as “weak IDs”. Most
techniques for ER are based on similarity functions andstiwkeling: candidate entities are se-
lected as matches when their similarity is above a threshBtith components can be tuned on
some ground truth matches and effectively enhanced withilegtechniques [%, 10]. The various
metrics of ER encompass lots of different parameters, defygenerality, accuracy, soundness,
scalability, parallelizability [25]. The standard pip®difor learning with ER is depicted in Figure 2
(left): (1) entities are matched based on similarity andiséias, (2) they are merged in one unique
database and (3) a model is learnt on the joint data. Comrsagrssn fusion, such a®nflictsand
heterogeneityg], are not considered in this work.

From a high level view, ER integrates data as a pre-processtiier tasks. When it comes

1This is clearly non trivial: if just two rows in each datasavh the same exact values for the shared features across
thep peers, this yield&” possible matchings for the reconstruction of the two exaspivolved.



to learning from ER’ed data, small changes in ER can have langact on evaluating classifiers,
even for simple classifiers as linear models. To see thipaewe are in the toy example of Table
. Here, all shared variables have the same values, so ardighing has two potential solutions
(notice that one of the shared variable is classOne, say ER1, is matching with ¢} ande;
with ¢,,. We denote the examples obtaineddyy = ((1,—1,1),1) andey, = ((—1,1,1),1) (an
example is a pair (observation, class)). The other solusay ER2, is matching; with ¢, and

ey With ¢). We denote the examples obtaineddgy = ((1,1,1),1) andey; = ((—1,—1,1),1).
Now, consider linear classifiér = (1,1, 1) € R?; the class it gives is the sign of its inner product
with an observationd(z) = sign(67z). While 0 classifies perfectly ofe,;, ex0} (zero error), it
classifies no better than random fn, 51} (error50%).

This is a potential consequence of non-accurate ER in angettiwhich weknowthat there is
a solution to ERIi.e. a one-one matching between data peers that recovers th@kesas they are
in the total sample. What happens if remove this assumpterif, we remove the assumption that
each example is seen byl peers ? This is a much more realistic model. Since there ihaed
ID — and the data may have been anonymized — we are not eveniinasian where we can
guarantee that a specific client of the baskor is not, a client of the insurance company. Thus,
there may be significant unknown data to reconstruct thésatapleS (Figure[1), but we do not
know which specific examples have missing features. Thiansrmst general settingi(), shown
in Figurel1 (right).

To cope with {¥P) or (G), we use a recently introduced trick to learn from privateadal]:
examples are not necessary to learn an accurate lineaifielasd/e insist on the fact that “accu-
rate” refers to the quality of the class prediction for olaéipns and examples. The input of the
algorithm consists oRademacher observationsados. One rado is just a sum, over a subset of
examples, of the observations times their class. Surgtisive can not only learn with data on
this form but the output classifier does not require any pogtessing since it is the same as if we
were learning with example.

Contributions — Our contribution starts from noticing that many rados anariant to the
selection of different solutions for entity resolution. rlexample, consider again Tal)le 1. Since
all classes are positive, computing a rado is just summisgmations. Letr;; ;; be the rado that
sums those of examples; andey,. Then, surprisingly, regardless of the solution to ER, thto
is thesame

(El) 7'[11722 = (1,—1,1)+<—1,1,1)
= (0,0,2)
= (1,1,1)+<—1,—1,1) = T012,21 (EZ) .

This, as we show, always holds in théR) setting: there exists a hugeg., of potential exponential
size, set of rados that match the set of rados that could litekidowingthe true entity resolution.
In the most general settings§, we show that a very simple transformation of the radolinkg
only the shared features, has in expectation the same piegpai/e give the algorithm that builds
these rados. It is easily parallelizable and requsdslinearcommunicationj.e. the amount of
information that transits is no larger — and may be much smnal than the size of all peers’
data.

These "ideal” rados are not just interestipgr se learning from them (Figuriel 2, right) is both
efficient and accurate. We show that using them leads appatixig the classifier that would be
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optimalon the set of all (ideally ER’ed) exampléghis involves three technical contributions. The
first is an elementary proof that the minimisation of the Ridggularized square loss [14] (on
examples) is equivalent to the minimisation of a regulatiweo loss, which we call thel-loss.
We then give the closed-form solution for the classifier miging the M-loss. Surprisingly, it
shows that the minimisation of the regulariZddloss, over the complete (eventually exponential-
size) set of "ideal” rados can be done not just in polynomiakt it is in generaffaster than
the minimization of the Ridge regularized square loss oxangles. Finally, the optimall-loss
classifier, learnt using only the set of "ideal” rados, cages (as the number of shared features
increases) to the minimizer of the Ridge regularized sglem®overall ideally ER’ed examples.
In other words, as the number of shared features increasssioe number of modalities of shared
features increases, we ayearanteedhat the classifier learned over rados will converge to ts¢ be
classifier learned over examples.

Last, but not least, while we focus on the two-classes sgttiescription features need not
be boolean. There is in fact no restriction apart from thé flaat shared features are treated as
ordinal instead of plain real: if one feature had as many Hite®as there are examples, then
there would be no need to address ER. The rest of this papsrf@lews. Sectiorf2 provides
preliminaries.§ [3 follows that shows how to learn from distributed data to imise, indirectly,
the Ridge regularized square loss over the ER’ed compléte §id presents experimental results.
Finally, §[B discusses our approach &1 concludes with open problems.

2 Preliminaries

Learning setting Welet[n| = {1,2,...,n} forn € N,; boldfaces likex indicate vectors, whose
coordinates are denoted as We briefly recall the task of standard (binary) classifmatwith
linear modeld as learning a predictor for label (or clagsg {—1,+1}, from atotal (learning,
training) sampleS = {(x;,v:),7 € [m|}. Each example is an observation-label paif, v;) €

X x {—1,+1}, with X C R thefeature spaceand it is drawn i.i.d. from an unknown distribution.
It is convenient to lefl = x¢_,X,. We reserve the wordntityfor a generic record in a dataset,
the object of matching, arattributesor featuredo its fields.

Our learning setting departs from the standard setting at\idillows. Instead of one total training
sample, we have (sub)samples$’ of sizem;, j € [p] for somep > 1. Each one is defined in

its own feature spack’ = xzjzlxjk, wherej, € [d], Vk. To get a simple case of this framework,
shown in FiguréIl, one may see edéh= {(x!,y!),7 € [m,]} handled by aeerP;. We rely on
the following assumption:

(G) The class, and a subset of featugelsom X, are shared by all peers. Each other feature is
exclusive to one peer.

Hence, each of the dimensionsifs in all X7s. There existdim(J) + 1 columns that represent
the same set of variables among peers, and one of them isat® cThis is a very weak and
realistic assumption for the featuresjinas well as for labels, in at least two situations. The first is
our setting YP), which is a gold standard of database frameworks, whendheaah is vertically
partitioned for the non-shared features, implying = m; = m,Vj,j’ € [p]. In this case, there
exists a one-to-one mapping between the peers’ rows, buaytlme extremely hard to compute
[25]. The other scenario is when at least one peer has clagsdblat turns out to be what is
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sufficient for all other peers to get labels as well, by the afsalgorithms that learn with label
proportions[[28] 24], as argued in Sectidn 5. The assumphi@neach non-shared feature is seen
by exactly one peer simplifies the technicalities: we disaetaxing this assumption in Section 3
(after Theoreri]5).

Rademacher observations In the standard classification model, a rademacher obsam(aado)

is a simple transformation of the examples in sanspleeto € %, = {—1,1}™. Thenradar, is
My = Zyi:m yi - x; [20,121], wherey; - x; is anedgevector. In our distributed setting, we extend
the definition in the following way. We let € J denote asignature andvy € {—1, +1} and peer
P.

VAR

i=1

mj
Toy) = PLOJung (Z Lovojy () =angi =yt f) : (1)

Notation1 is the indicator function, angroj,(z) denotes the restriction afto J. In short n{ )
sums edge vectors local B whose examples match signatsrand class;. Let F(z) be the set
of features ofz, assumed to be if. We also define, for an§’ O F(z), lifts (2) to be the vector
=" described using” such thaprojg,(2') = z andprojg 5, (2') = 0. While proj;(z) removes
coordinates ok, lifts (z) "completes” the coordinates efwith zeroes.

By analogy with entity resolution [32], we defitdock radosas rados, lifted td(, that are the
(weighted) sums of examples matching a particular sigeand class in all peers.

Definition 1 Foranys € J,y € {—1,1}, u € R theu-basic block (BB) rado for pair(s, y) is

p
.,y = u-lifte(y-s)+ > lifte(n, ) 2)
j=1
Letd, =g x {—1,1}, andd. = {(s,y) € d+ : 3j € [p], 7, ,, # O}. This latter set, which can
easily be computed from all peers, has cardinal= |J.| < m, and evenn, < m when few
features are shared. For anyc R™~, we letR}y = {7, Vi € [m.]} denote the set of each-BB
rado, each coordinate af being in one-one correspondence with an elemeft @fepresented by
v;). A superset ofR} is interesting, that considers all sums of vectors ftRn

{an YU C m*]} : 3)

S

We call R* the set ofu-block rados. Notice that we may havR®| = Q(25 11, It is therefore
intractable in general texplicitly computeRy. However,|Ry| = O(3; [8’]) and to compute it,

we just need the set af{svy), hence a communication complexity that can be much smélser t
> 1871,
3 Building and learning from BB rados

We address two questions: why/how we can use (basic blodksreo learn accurate classifiers,
and how we should fix.



Example vs rado losses Learning@ on 8 is done by minimizing a loss function. Here, we
consider the Ridge regularized square 10s$ [T4E(sym. positive definite, SPD),

lea(8,0;T) = %-2(1 — 0 )2 +0'T0 . (4)

It is crucial to remark that this loss is described over thaltsampleS of examples (see the red
rectangle in Figurgl1). This the loss we want to minimize, exactly or approximately. Czgson
we choose this loss is that in the standard classificationdveork, it admits a simple closed form
solution:

0 = argmin (oy(8,6:1) = (XXT +m- N 'm, (5)

whereX = [z1|zs| - - - |2,), and SOXXT = >, x;x . Remark tha®?, involves one radarg, . For
any? C {—1,1}™, we letRs » = {7, : M, € P} denote the set of rados that can be crafted from
P usings.

Definition 2 TheM-loss overRs 5 of classifierd is:

gM(:RS’{p,e) = — <E3>[9T7To-] — % . V?[BTT[O-]) s (6)

where expectation and variance are computed with respdbetaniform sampling of in P.

What is inside the parenthesis looks like a (vanilla) Marktewnean-variance criterion [19] —
“vanilla” because there is no variable coefficient for trekraversion. What this means is that a
good classifier trained on rados should have large “retund’samall “risk”, where the risk is the
variance of its predictions and the return is its inner pabdvth the expected rado.

The Theorem to follow shows that what was known for the lagisiss in [21] also holds for
the square loss: there exists a loss described over rédosuch that/,(0) (dependences on
other parameters omitted) is equal to a strictly increadimgtion of /y;(80), for any 8. Hence,
minimizing /s, (@) over examples igquivalentto minimizing /(@) for the sameclassifier. The
proof of the Theorem, elementary, is interesting in itsslitaimplifies the long derivation for the
equivalence between rado and example losses In [20].

Theorem 3 LetX:,, = {—1,1}™. Then, for anys, anyI andany 0, (,;(S,0;1') = 1 + (4/m) -
EM(IRS,ZWH 0; F) with

gM(:Rg’gm, 9; F) = gM(:Rg’gm, 0) + %OTFO . (7)



Proof First, we remark thaEy, [0'7t,] = 0'Ey, [7,] = (1/2) - 6'm,, since each example
participates to half of the™ rados. Lettingy = 2™ . Vy, [0 7t,], we also have

1 2
b= 4y <0Tn0—§-0Tny>

O'EEWL

S

O'Ezm

- Z [i(eTiﬂi)2 + Zm: Z O‘iO‘i/GTCBiOT:Bi,]

0€sm Li=1 i=1 il

= 2m. i(e%,ﬁ + i > v 0w @y (8)

i=1 i=1 i'#£i

with v = Zoezm o;0.. Now, for any:i # ¢/, 0,0, takes exactly the same number of times
value +1 and value—1, and sov;; = 0,Vi # . We get from eq. [(8Vx,, [0 7] = (1/4) -
S (0Tx)? = (1/4)- 57" (y:.0"x;)*. Finally,

4
1+ — - Iu(8,%,,0)
m

m

2 <~ a7 1 T, 32
= 1_E';yi0 CBMLE'Z(%O ;)

i=1

— LY -0 ) (©)
m %
and we get Theorefd 3 by integrating Ridge regularization. [ |

Hence, minimizing the Ridge regularized square loss ovaemgites is equivalent to minimizing a
regularized version of thel-loss, over the complete set of all rados. This set has exp@ahsize.

The usual trick would be to randomly subsample this hugeaseng with proving good uniform
convergence bounds for thd-loss — this can be done in the same way as for the logistic loss
[21]. However, in the case of the square loss, greed paystwéarning from all rados iR* may

be both cheap (computationally) and accurate.

Computation and optimality of R* In our distributed context, we do not have access to all rados
because we do not assume that we have access to an entityngdteiction. Yet, we are going to
show a first result which is, in a sens&ronger in very general settings, there exist& R+ such
thatRY, systematicallyr in expectation, belongs ®s ., . This setRY of potentially exponential
size, therefore gives us a set of rados that would have bekriromn S, had we known the perfect
solution to entity matchingSo, even without carrying out entity matching, we have ssdte a po-
tentially huge set of "ideal” rados which we can use to lgaria the minimization o?y(., 8;T).
Furthermore, there exists a simple algorithm to bt} The communication protocol, in Figure
for p = 3 peers, summarizes what happens when peers have receivedgadsRT(s, y)”
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Figure 3: Communication for one BB rado, with, y) € J.. Counterc is defined in Algorithm
RADOCRAFT (see text).

from a "rado crafting” peer implementing Algorithim 1 below{” symbolizes message sending).
Specifically,P; does the following:

e it computes and retum{sﬁy); let C; be the number of examples that are counted in the sum
ineq. [1);

e it updates counter vectar. for each featureé: ¢ J it possesses in its database, it does
¢, — ¢+ Cs;

Remark that the updates efcan easily be done in parallel, as well as the computatioract e
n{s ,) for each peer. Letting; = (s,y) € d., the corresponding value of is given by:

up=1; = (1'e)(|d —dim(g))™" (10)

which is guaranteed to be non-zero singes J.. We now show one of the main results of this
paper.

Theorem 4 In setting {P), for anyp > 2, any 8, any J, the following holds on the output of
Algorithmd: R¥ C Rg y,, .

Proof (sketch) Letw € R™* be such thatv; is the number of examples Eithat matchv;. The
proof follows two steps, (iR = R¥ and (i) R¥ C Rsy,.. Then, (i) is immediate; for (ii),
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Algorithm 1 RADOCRAFT(P;, Ps, ..., P))

Input Peers;, Py, ..., P,;
Step 1: LetRY <+ ();
Step 2ifor s € J,y € {—1,+1}
2.1: Lett + 0 € R?, ¢ < 0 € N¢-dim(@);
2.2:for j € [p]
2.2.1:7 + 7 + lifty (PART(s, y) ~ P});
2.3 Letii + (17¢) (d — dim(9))~%;
2.4: R REU (i - lift(y - 8) + 70);
Return R%;

the proof follows once three simple facts are establishetien(/P) setting: (a) the true entity
matching exists, (b) amy;-BB rado for pairv; = (s, y) would be obtained as a rado summing
the contribution of all examples i& matching the corresponding signatwand clasgy, (c) we
obtainR¥ C Rs .., from which follows the Theorem’s statement with €d. (3) #meifact that any
sum of a subset of rados &i* would also be ifRs 5. since an example cannot match two distinct
couples (signature, class). [ |

Hence, in the {YP) setting, Algorithnl always provides the basis for a (polgsexponential-
sized) sefR? of these "ideal” rados. Let us now generalize Theorém 43 Which is obviously
more difficult to tackle since (i) there may be a huge amoumhisking data ( in Figure[1l) and
(i1) there would be no one-one correspondence between #ms’m@xamples in general. Yet, there
is a interesting property which can be shown in the follon{Ryandomized model: each peer’s
features remain fixed (and all peer’s features comply Wit} (but there exists a fixeg € [0, 1]™
such that exampléhas probabilityr); to be seen by a peer. L8tdenote the "expected” sample,
where each example is weighted by its probability. For agynatiures and classy, E[m(, ]
denotes the expected rado putRfi in step 2.4 of AlgorithnfiI1.

Theorem 5 Under R), V(s,y) € d+, E[rtsy)] € Rsy, -

(Proof omitted) Hence, under settinG), if examples are "seen” independently at random by
peers, the expected output of Algorittitn 1 still meets thergnt@es of Theoreim 4 with respect
to the expected sample. The fact tiRff C Rsy,, from Theorenf# is also a consequence of
Theorenib fom = 1. Finally, there is one way to relax further assumpti@),(which is to let
each feature not shared by all peers to be shared by any sidipsetrs. In this case, itis possible to
modify RADOCRAFT so that itstill builds rados that would meet Theorein 5. This mainly requires
a careful adjustment of each counter

Learning from all rados of R% The questions that remain are how we minimize the reguldrize
M-loss and, more importantly, what subset of rados ftRfrwe shall use. As already discussed,
we choose "greediness” against randomization [21]: irtégicking a (small) random subset of
R%, we want to use therall because we know that all of them are "ideal” or close to bemgia
Theorem$¥[15. Recall théR%| may be of exponential size (im, d, |J.|, etc.). We now show
that if we consider all ofR¥, the optimal@,, of /,i(R*, 8;T") has an analytic expression which
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Algorithm 2 DRL(Py, P,, ..., P,; T)
Input PeersP;, P, ..., P,, SPD matrix’, y > 0;
Step 1:B +— Column(RADOCRAFT(Py, Py, ..., P,));
Step 2:6 « (BBT +v-T) ' BI;
Return 6;

dependnly on the rados oRR%. In short, it is everfasterto compute tha®*_ from 8 in eq. [5),
and can be directly computed from the output of Algorifim 1.

Theorem 6 Let0?,; = arg ming /;(R%, 0;T) (eq. [7)). Then
0*

rad

(BBT 4 dim,(B)-T) ' B1 , (11)
whereB stacks in columns the rados &f:, anddim,(B) is the number of columns 8t

Proof The proof uses the following trick: consider any samlsuch that its edge vectors match
the basic block rados. Remark theX™ = > .(v,x;)(y;z;)" in eq. [B) depends only on edge
vectors, and so, smoey = B1, the optimal square loss classifier 8nis 67, , in eq. [11), which,
through Theorernl3, is also the optimal classifieriiR%, 9;T'). [

Whenm, = m, each element RR¥ is in fact an example, and we retrieve €d. (5). One conseguenc
of Theoreni6 is the following convergence property which wetsh: in the YP) setting, for any

e > 0, there exists a minimal size f@r. such tha®;,; will be c-close tof?,, where the closeness
can be measured b\gr,, — 0%, ||> or |cos(07%,4, 0%,)|. The statement of DRL (Distributed Rado-
Learn) is given in Algorithmi 2. In Step 1c8lumn(.)” takes a set of vectors and put them in

column in a matrix.

4 Experiments

Algorithms We have evaluated the leverage that DRL provides comparédet@eers, that
would learn using only their local dataset. Each ggegstimates learns through a ten-folds strati-
fied cross-validation (CV) minimization &f, (87, 8;y - 1d,,) (see eq.[(5)), wherg is also locally
optimized through a ten-folds CV in st = {.01,1.0,100.0}. DRL minimizes/y;(R%,6;T)
(solution in eq.[(I1)) wher¥ is built using RRDOCRAFT, with the set of all peers as input.

We have carried out a very simple optimisation of the regsddion matrix of DRL as a di-
agonal matrix which weights differently the shared feagyie = Diag(liftx(projs(1))) + v -
Diag(liftx (projy\4(1))), for y € §G. v is optimized by a 10-folds CV ofi.. CV is performed
on radosas follows: first,R% is split in 10 folds SRBZ, for¢ = 1,2,...,10. Then, we repeat for
¢=1,2,...,10 (and then average) the following CV routine:

1. DRL is trained usin®R\R% ,;

2. DRL’s solution,@% 4, is evaluated on “test rados” by computifig(R%,, 67, ,; T).

B,{) rad’

The expression df for rados exploits the idea that the estimations relatedsioeaed feature can
be much more accurate than for another, non shared feature.
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Domain m  d | min; Pe(P;) D dim(J) Results
Wine 178 12 007 |[{2,3,..8 ({1,2,3,4} | Tablel2
Sonar 208 60 0.29 {2,3,...,16} {1,2,...,20} || Table6
lonosphere 351 33 020 |{2,3,...,9} {1,2,..,9} | Table8
Mice 1080 77 030 |[{2,3,..,20} {1,2,..,20} || Table@
Winered 1599 11 026 |[{2,3,..,7} {1,2,3,4} | Table[®
Steelplates 1941 3B 0.16 | {2,3,..,14} {1,2,...5} | Table[14
Statlog 4435 34 0.05 {2,3,...,30} {1,2,..,5} || Table[13
Winewhite | 4898 11 032 |{2,3,...7% {1,2,3,4} | TabledD
Page 5473 10 0.21 |{2,3,...6} {1,2,3,4} Table[3
Firmteacherr 10800 16 0.26 |{2,3,....7} {1,2,..,7} || Table¥
Phishing 11 055 30 011 |{2,3,4,5} {1,2,3,4} | TableIl

Table 2: UCI domains used in our experiments [1], with fortetie indication of the total number
of features ¢), examplesz) and the error of the optimal peer in hindsight obtained ineper-
iments,min; p.,.(P;). Two of the right columns present, for each domain, the rarfg@lues for
the number of peerg) and the number of shared featuréa{(J)) considered. Experiments were
performed consideringll possible combinations of values pfanddim(d) within the allocated
sets. The rightmost column points to the Table collectirer#j results for each domain.

Domain generation we have used a dozen UCI domains [1], presented in Table 2.edar
domain, we have varied (i) the number of pegrsii) the number of shared featurdan(J), and
(i) the numberb of numeric modalities ("bins”) each shared feature was ceduo (controls the
size ofJ,). The training sample is split among peers, each keepiraydexf J and its own features
(non shared features are evenly partitioned among pedrgllyi for somep, € [0, 1], each peer
P; selects a proportiop, of its examples index and for each of them, another peechosen at
random, gets the example as well (on its own set of featlifeds Whenp, = 0, this is setting
(VP). We then rurall algorithms foreachvaluep, dim(9), b, ps. As we shall sed; appears to have
a relatively small influence compared to the other factarsys mainly report results combining
various values fop, dim(J) andp,, for the range of values of, dim(J) specified in Tablé]2, and
for p, € {0.0,0.2}. We have choseh = 4 for all domains, except when it is not possible (if
for example all features are boolean), in which case we piek 2. Table[2 also provides the
smallest test error obtained for a peer among all runs fdn damain: this is an indication of the
room of improvement for DRL, and it also shows that in geneatleast some (and in fact most)
peers were always very significantly better than randomgingsa safe-check that DRL is not
just beating unbiased coins.

Metric We used two metrics. The first,

A = par(DRL) _mjinﬁorr(Pj) (e [-1,1]), (12)

is the test error for DRL minus that of tlogptimalpeerin hindsight(since we consider the peer’s
test error). whem\ < 0, DRL beatsall peers. For example, Tallé 3 (left) provides the results
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obtained on UCI domain page. We see that for almost all coatioins ofp anddim(d), DRL beats
all peers.
To evaluate the statistical significance, we compute

q = proportion of peerstatisticallybeaten by DRL(< [0, 1]) . (13)

To compute the test, we use the powerful Benjamini-Hochbesgedure on top of pairedtests
with ¢* = p-val = 0.05, [3]; ¢ = 0.8 surface helps see when DRdtatistically beats all peers
For example, Tablel3 (right) displays that DRL does not alstgtisticallybeat all peers when
A < 0, yet it manages to stastically beat all of them in approxétyabne third to one half of the
total tests, which implies that, on this domain, there igaificant chance that DRL improves on
the peers, regardless of their number and the number ofdsfeatures.

Results Due to the large number of domains considered, results éit@aspng different tables,
one for each domain in general, in TabledB[1416, 17,18 9 IPIANI3,[T14 (also referenced
in Table[2). All domains display that there exists regimeslim(J)) for which DRL improves
on all peers, in some cases significantly. Sometimes, theovement is sparse (phishing), but
sometimes it is quite spectacular and in fact (almost) syatie (page, ionosphere, steelplates).
domain steelplate’s case is interesting, since the sed@Hlacle i.e. the learner that leans from the
complete training foldeforeit is split among peers — and therefore knows the solutiomtiye
matching —, has for this domain almost optimal error, bualqueers are in fact very far from
this optimum. This indicates that many features, propeoiylsined, are necessary to attain the
best performances. DRL'’s performances are close to thd€rahich accounts for the huge gap
in classification compared to peers — sometimes, DRL'’s test & smaller than that of thigest
peer by more than 20—, and so it seems that DRL indeed successfully bypassey eraiching

to learn a classifier that almost matches the Oracle’s pegoces, and therefore represents a very
significant leverage of each peer’s data.

To drill down into more specific results, Talble] 15 (left) daggs that binning indeed does not
affect significantly DRL on average, which is also good nesgisce it means that there is no
restriction on the shared features for DRL to perform wehared features can be binary, or
categorical with any number of modalities. Table 16 displénat while the CV tuning of offers
leverage to DRL\sI' = Id,) in general (firmteacher), there are some (rare) domainsejmi
on which relying on the simpledt = Id,; improves upon the results of CV. This, we believe,
comes from the fact that CV as we have carried out is certaintyoptimal because one rado
can aggregate any number of examples. Last, Tallle 15 (il down a bit more into the
performances of DRL with respect to those of the Oracle onraaiio for which DRL obtains
somehow “median” performances among all domains, sonag. Oracle (10-folds CV from the
total ER’edd) is idealisticsince in general we do not know the solution to ER, yet it golass on
how close DRL may be from the "graal”. Interestingly, DRL cesrfrequently under the statistical
significance radar( = 0.05). In notable cases (more frequentigasncreases), DRL beats Oracle
— but not significantly. Aside from theory, these are good @& DRL does not assume ER’ed
data, and uses an amount of data which can @ timessmallerthan Oracle.
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Table 3: Results on domain page: plots/®f= p.,(DRL) — min; p..(P;) (left) andg = prop.
peerssimultaneouslpeaten by DRL (right) as a function of the number of peesad the number
of shared featuredim(g). Top: proportion of shared examplgs = 0.0 (setting ¥P)); bottom:
proportion of shared examples = 0.2. The isoline on the left plots i& = 0.

5 Discussion and related work

We remark that our framework is not formally comparable &R, since the two address different
problems. On one hand, ER has a much broader applicabgityttie problem object of this paper;
learning on distributed datasets is less general than EfRRctnwe show a solution that bypasses
ER. On the other handgarning-baseER [5] as well as manifold alignment techniques|[15] are
viable only knowing some ground truth matches — which are@gaired for working with rados.
From another perspective, in concert with ten issuem [13], we study ER as component of a
pipeline for classification, and highlight how matching & necessary for the purpose of learning.

In spite of those considerations, we can still draw compasgswith methods that learn on
top of data merged through ER (Table 5). In both settings[h&Ishared between datasets but
some attributes must be so, in order to allow entities coraparfor matching or for building
rados. Obviously, entity matching does not require theltatmebe one of those shared attributes,
while this is a fundamental hypothesis of our approach. dlth, it is not as restrictive as may be
expected at first: if just one peer has labels, thiknan obtain labels on their own data, iearning
from label proportiond23,24]: the label handling peer computes the label progostper each
block; the “bags” are defined by examples matching a padicsignature. Proportions are then
shared among all other peers, which can train a classifiér twém so as to obtain approximate
labels for each observation.

To discuss time complexity, let us consider a simplified pobwith only 2 peers withn
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Table 4: Results on domain mice, using the same conventidaldg 3.

examples each in th&P) scenario. In terms of complexity of fusion, if we assume thamples
are uniformly distributed in the blocks, each block has sizen*. DRL builds each block rado
in time O(m/ H ), with total cost linear inn. ER takesO(m?/H? - T;,,) to match entities in each
of the H blocks, wher€l’,;,,, is the cost of evaluation a similarity function; learningsied methods
spend additional time for training; advanced blockingtstyges can reduce the average complexity
[4,132,31].

Most literature on distributed learning is concerned wiitiiting communication and designing
optimal strategies for merging models[[2] 17]; beside thatyious works focus on horizontal split
by observations, with few exceptions [18]. In contrast, weleit what is sufficient to mergabout
the data The communication protocol is extremely simple. Once saai@ crafted locally, they
are sent to a central learner in one shot. By Thedrem 6, édliynensionaln* blocks rados are
needed.Data is not accessed anymased learning takes place centrally. Moreover, rados help
with data compression, being* x d, m* < m the problem size. ER needs to transfer and learn
from all entities, for a total size ofi x d.

Learning on data described by different feature sets isapie bf multiple view learning and
co-training [7] 26]. To the best of our knowledge, co-tragqivith unknown matches has not been
addressed before.|[8] presents a multi-view distributgdrithm with co-regularization; although
it requires matches for all unlabelled examples.

In settings with multiple data providers, privacy can bec@l(2]. The agents have to trade off
model enhancements and information leaks. A learner reseados to train the model; this can
be done by one of the agents, or by a third party — parallelinfirparty ER scenarios [9]. The
only information sent through the channel consists of radde examples, with their individual
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Metric ER +Learning | RADOCRAFT + DRL
Assumption: shared IDs no no
Assumption: some shared variables necessary necessary
Assumption: shared labels no may be relaxed
Fusion / Rados crafting O(m?/m* - Tyim) O(m)
Communication m X d m* X d, m* << m
Learning problem m X d m* X d, m*<<m
Privacy complex many guarantees

Table 5: Multiple metrics of comparison between learninga@mof ER and our approach. Time
complexity are estimated for 2 peers in thé) scenario, assuming all blocks of equal size. See
Sectior{b for details.

sensible features, are never shared. Hardness resultsanstrict-ability of examples have been
proven, along with NPHARD characterizations, and protection in the sense of diftekprivacy
[21]. Furthermore, due to their compressive power, radpsesent an alternative to bulk data
collection [27]: storing examples becomes superfluous.aRigg ER, since matching has the
potential of de-anonimizing the entities, privacy is ugual very relevant issue to address [9].
However, solutions are not straightforward, as proven leyiist amount of research on the topic
[30]; techniques based on partial share of attributes, @anaration or hashing can severely impair
the process.

Even assuming labelled examples, no (observation, labé&l)gactually available for training,
and thus the task can be seen as weakly supervised |12, 2Bhulyh, a set of aggregate quantities,
i.e. sums of examples over subsets of the total sample (the ramws}$ out to be enough for
learning. Theorernl3 expresses a fornmsofficiencyof the whole set of rados with regard to the
square loss; a similar property is proposed for logistis ing21]. One of the™ rados thanean
operator, us = (1/m) - m,, is formally proven asufficient statisticfor the class for a wide set of
losses([2B, 22]. This work, along with the cited predecesssitows how the interplay between
aggregate statistics and losses can lead to effectiva@udub difficult learning problems.

6 Conclusion

The key message of our paper is that Entity Matching addsessery generadbut difficult prob-
lem, and in the comparatively restricted context of sumadilearning from distributed datasets,
accurate learning evading the pitfalls of Entity Matchisgossible with Rademacher observations.
Rados have another advantage: they offer a cheap, easdlygliaable material which somehow
“compresses” examples while allowing accurate learningeyTalso offer readily available solu-
tion for guarantees private exchange of data in a distribsiéting. Finally, some domains display
that there is significant room space for improvement of havgsivalidation of optimized param-
eters are handled. This interesting problem comes in panrt the fact that statistical properties of
cross-validation on rados anetthe same as when carried out on examples; this particulacasp
will deserve further analysis in the future.
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Table 6: Results on domain sonar, using the same converdidatdd 3.
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Table 15: Left test error of DRL on domain ionosphere, as a function of thelper of bins,
aggregating all values of the number of pegrand number of shared featurésn(dJ) used in
Table[8; the green line denotes the average valRaght scatterplot of the test error of DRIy

vs that of the Oracle (learning using the complete entiseleed domain). Points in the dark
grey area (green) denote better performances of DRL; puwiritee light grey area (blue) denote
better performances of the Oracle (but not statisticaltydoe Points in the white area (red) denote
statisticallybetter performances of the Oracle (filled poipts= 0.2; empty points, = 0.8).
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Table 16: Results of the dummy regularized DRL £ 1d;) on domains firmteacher (left) and
mice (right), following the convention of Tallé 8,(= 0.2).
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