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Abstract

Consider the following data fusion scenario: two datasets/peers contain the same real-
world entities described using partially shared features,e.g. banking and insurance company
records of the same customer base. Our goal is to learn a classifier in the cross product space of
the two domains, in the hard case in which no shared ID is available –e.g. due to anonymiza-
tion. Traditionally, the problem is approached by first addressing entity matching and subse-
quently learning the classifier in a standard manner. We present an end-to-end solution which
bypasses matching entities, based on the recently introduced concept ofRademacher obser-
vations(rados). Informally, we replace the minimisation of a loss over examples, which re-
quires to solve entity resolution, by theequivalentminimisation of a (different) loss over rados.
Among others, key properties we show are (i) a potentially huge subset of these radosdoes not
require to perform entity matching, and (ii) the algorithm that provably minimizes the rado
loss over these rados has time and space complexitiessmaller than the algorithm minimizing
the equivalent example loss. Last, we relax a key assumptionof the model, that the data is
vertically partitioned among peers — in this case, we would not even know theexistenceof a
solution to entity resolution. In this more general setting, experiments validate the possibility
of significantly beating even theoptimalpeer in hindsight.
Keywords: entity resolution, distributed learning, Rademacher observations, square loss, Ridge
regularization.
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Figure 1: Schematic views of our settings, withp = 3 peers. In both cases, some features (cyan)
are described in each peer (best viewed in color) and one these shared features is a class. Non-
shared features are split among peers. A so-calledtotal sampleS is figured by the red rectangle.
Left: in the vertical partition (VP) case, all peers see different views of the same examples, but do
not know who is who among their datasets (”?”). Hence, each bit of the total sample is seen by one
peer.Right: in the more general setting (G), it is not even known whether one example, viewed by
a peer, also exist in other peers’ datasets. In this case, there may be a lot of missing data (⊥), but
it is not known which example has missing data.

1 Introduction

Learning from massively distributed data collections and multiple information sources has become
a pivotal problem, yet it faces critical challenges, among which is the fact that it relies on re-
constructing consistent examples from diverse features distributed between different data handling
peers. Exhaustive search to solve this problem is simply not scalable, nor communication efficient,
and sometimes not even accurate [11, 34].
— A key technical message of our paper is:

Entity resolution can be bypassed to carry out supervised learning almost as accurate as if its
solution were known.

A main motivation of this work comes from the reported experience that combining features
from different sources leads to better predictive power. For instance, insurance and banking data
together can improve fraud detection; shopping records well complement medical history for es-
timating risk of disease [29]; joining heterogeneous data helps prediction in genomics [16, 33];
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Peer 1 Peer 2
shared

x1 x3 c
e1 1 1 1
e2 -1 1 1

shared
x2 x3 c

e′1 -1 1 1
e′2 1 1 1

Table 1: A simple case of the (VP) setting, withp = 2 peers, with two shared variablesx3 andc
(the class to predict). This toy example has binary description features and a binary shared feature,
but this restriction does not need to hold in the general case. For example, each shared feature can
be any categorical/ordinal feature, like “postcode”, “age-bracket”, etc.

peer 1

Matching

(2) Data Fusion

(3) Learning

peer 2

(1) Entity

peer 1

(2) Rado Fusion

(3) Learning

peer 2

(1) Rados(1) Rados

Figure 2: Learning on top of ER (left) or with rados (right).

security agencies integrate various sources for terrorismintelligence [28, 9, 27].
Typical data fusion methods however rely on a known map between entities [6],i.e., peers

have partially different views of thesameexamples. Instead, we assume the datasets do not share
a common ID, as shown in Figure 1 ((VP), left); that is, for example, the case when data collec-
tion of was performed independently by each peer, or when sources were deliberately anonimized.
Entity resolution(ER), or entity matching [10], would be the traditional approach for reconciling
entities with no shared ID1. It approximates aJOIN operation, assuming that some of the attributes
are shared,e.g., age-band, gender, postcode(etc.), and hence can be used as “weak IDs”. Most
techniques for ER are based on similarity functions and thresholding: candidate entities are se-
lected as matches when their similarity is above a threshold. Both components can be tuned on
some ground truth matches and effectively enhanced with learning techniques [5, 10]. The various
metrics of ER encompass lots of different parameters, including generality, accuracy, soundness,
scalability, parallelizability [25]. The standard pipeline for learning with ER is depicted in Figure 2
(left): (1) entities are matched based on similarity and heuristics, (2) they are merged in one unique
database and (3) a model is learnt on the joint data. Common issues in fusion, such asconflictsand
heterogeneity[6], are not considered in this work.

From a high level view, ER integrates data as a pre-process for other tasks. When it comes

1This is clearly non trivial: if just two rows in each dataset have the same exact values for the shared features across
thep peers, this yields2p possible matchings for the reconstruction of the two examples involved.
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to learning from ER’ed data, small changes in ER can have large impact on evaluating classifiers,
even for simple classifiers as linear models. To see this, suppose we are in the toy example of Table
1. Here, all shared variables have the same values, so entitymatching has two potential solutions
(notice that one of the shared variable is classc). One, say ER1, is matchinge1 with e′1 ande2
with e′2. We denote the examples obtained bye11

.
= ((1,−1, 1), 1) ande22

.
= ((−1, 1, 1), 1) (an

example is a pair (observation, class)). The other solution, say ER2, is matchinge1 with e′2 and
e2 with e′1. We denote the examples obtained bye12

.
= ((1, 1, 1), 1) ande21

.
= ((−1,−1, 1), 1).

Now, consider linear classifierθ = (1, 1, 1) ∈ R
3; the class it gives is the sign of its inner product

with an observation,θ(z)
.
= sign(θ⊤z). While θ classifies perfectly on{e11, e22} (zero error), it

classifies no better than random on{e12, e21} (error50%).
This is a potential consequence of non-accurate ER in a setting in which weknowthat there is

a solution to ER,i.e. a one-one matching between data peers that recovers the examples as they are
in the total sample. What happens if remove this assumption,i.e. if we remove the assumption that
each example is seen byall peers ? This is a much more realistic model. Since there is no shared
ID — and the data may have been anonymized — we are not even in a situation where we can
guarantee that a specific client of the bankis, or is not, a client of the insurance company. Thus,
there may be significant unknown data to reconstruct the total sampleS (Figure 1), but we do not
know which specific examples have missing features. This is our most general setting, (G), shown
in Figure 1 (right).

To cope with (VP) or (G), we use a recently introduced trick to learn from private data [21]:
examples are not necessary to learn an accurate linear classifier. We insist on the fact that “accu-
rate” refers to the quality of the class prediction for observations and examples. The input of the
algorithm consists ofRademacher observations, rados. One rado is just a sum, over a subset of
examples, of the observations times their class. Surprisingly, we can not only learn with data on
this form but the output classifier does not require any post-processing since it is the same as if we
were learning with example.

Contributions — Our contribution starts from noticing that many rados are invariant to the
selection of different solutions for entity resolution. For example, consider again Table 1. Since
all classes are positive, computing a rado is just summing observations. Letπij,kl be the rado that
sums those of exampleseij andekl. Then, surprisingly, regardless of the solution to ER, thisrado
is thesame:

(E1) π11,22 = (1,−1, 1) + (−1, 1, 1)

= (0, 0, 2)

= (1, 1, 1) + (−1,−1, 1) = π12,21 (E2) .

This, as we show, always holds in the (VP) setting: there exists a huge,i.e., of potential exponential
size, set of rados that match the set of rados that could be built knowingthe true entity resolution.
In the most general setting, (G), we show that a very simple transformation of the rados, involving
only the shared features, has in expectation the same properties. We give the algorithm that builds
these rados. It is easily parallelizable and requiressublinearcommunication,i.e. the amount of
information that transits is no larger — and may be much smaller — than the size of all peers’
data.

These ”ideal” rados are not just interestingper se: learning from them (Figure 2, right) is both
efficient and accurate. We show that using them leads approximating the classifier that would be
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optimalon the set of all (ideally ER’ed) examples. This involves three technical contributions. The
first is an elementary proof that the minimisation of the Ridge regularized square loss [14] (on
examples) is equivalent to the minimisation of a regularized rado loss, which we call theM-loss.
We then give the closed-form solution for the classifier minimizing theM-loss. Surprisingly, it
shows that the minimisation of the regularizedM-loss, over the complete (eventually exponential-
size) set of ”ideal” rados can be done not just in polynomial time: it is in generalfaster than
the minimization of the Ridge regularized square loss over examples. Finally, the optimalM-loss
classifier, learnt using only the set of ”ideal” rados, converges (as the number of shared features
increases) to the minimizer of the Ridge regularized squareloss overall ideally ER’ed examples.
In other words, as the number of shared features increases oras the number of modalities of shared
features increases, we areguaranteedthat the classifier learned over rados will converge to the best
classifier learned over examples.

Last, but not least, while we focus on the two-classes setting, description features need not
be boolean. There is in fact no restriction apart from the fact that shared features are treated as
ordinal instead of plain real: if one feature had as many modalities as there are examples, then
there would be no need to address ER. The rest of this paper is as follows. Section§2 provides
preliminaries.§ 3 follows that shows how to learn from distributed data to minimise, indirectly,
the Ridge regularized square loss over the ER’ed complete data. § 4 presents experimental results.
Finally, § 5 discusses our approach and§ 6 concludes with open problems.

2 Preliminaries

Learning setting We let[n]
.
= {1, 2, . . . , n} for n ∈ N∗; boldfaces likex indicate vectors, whose

coordinates are denoted asxi. We briefly recall the task of standard (binary) classification with
linear modelsθ as learning a predictor for label (or class)y ∈ {−1,+1}, from a total (learning,
training) sampleS

.
= {(xi, yi), i ∈ [m]}. Each example is an observation-label pair(xi, yi) ∈

X×{−1,+1}, with X ⊆ R
d thefeature space, and it is drawn i.i.d. from an unknown distribution.

It is convenient to letX
.
= ×d

k=1Xk. We reserve the wordentity for a generic record in a dataset,
the object of matching, andattributesor featuresto its fields.
Our learning setting departs from the standard setting in what follows. Instead of one total training
sample, we havep (sub)samples,Sj of sizemj , j ∈ [p] for somep > 1. Each one is defined in
its own feature spaceXj .

= ×
dj
k=1Xjk , wherejk ∈ [d], ∀k. To get a simple case of this framework,

shown in Figure 1, one may see eachSj .
= {(xj

i , y
j
i ), i ∈ [mj]} handled by apeerPj . We rely on

the following assumption:

(G) The class, and a subset of featuresJ from X, are shared by all peers. Each other feature is
exclusive to one peer.

Hence, each of the dimensions ofJ is in all Xjs. There existsdim(J) + 1 columns that represent
the same set of variables among peers, and one of them is the class. This is a very weak and
realistic assumption for the features inJ, as well as for labels, in at least two situations. The first is
our setting (VP), which is a gold standard of database frameworks, when the domain is vertically
partitioned for the non-shared features, implyingmj = mj′ = m, ∀j, j′ ∈ [p]. In this case, there
exists a one-to-one mapping between the peers’ rows, but it may be extremely hard to compute
[25]. The other scenario is when at least one peer has classes, as that turns out to be what is
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sufficient for all other peers to get labels as well, by the useof algorithms that learn with label
proportions [23, 24], as argued in Section 5. The assumptionthat each non-shared feature is seen
by exactly one peer simplifies the technicalities: we discuss relaxing this assumption in Section 3
(after Theorem 5).

Rademacher observations In the standard classification model, a rademacher observation (rado)
is a simple transformation of the examples in sampleS. Letσ ∈ Σm

.
= {−1, 1}m. Then radoπσ is

πσ

.
=
∑

yi=σi
yi · xi [20, 21], whereyi · xi is anedgevector. In our distributed setting, we extend

the definition in the following way. We lets ∈ J denote asignature, and∀y ∈ {−1,+1} and peer
Pj ,

π
j

(s,y)

.
= projXj\J

(

mj
∑

i=1

1projJ(x
j
i )=s∧yji=y

yji · x
j
i

)

. (1)

Notation1. is the indicator function, andprojI(z) denotes the restriction ofz to I. In short,πj

(s,y)

sums edge vectors local toPj whose examples match signatures and classy. LetF(z) be the set
of features ofz, assumed to be inX. We also define, for anyF′ ⊇ F(z), liftF′(z) to be the vector
z′ described usingF′ such thatprojF(z)(z

′) = z andprojF′\F(z)(z
′) = 0. WhileprojF(z) removes

coordinates ofz, liftF′(z) ”completes” the coordinates ofz with zeroes.
By analogy with entity resolution [32], we defineblock radosas rados, lifted toX, that are the

(weighted) sums of examples matching a particular signature and class in all peers.

Definition 1 For anys ∈ J, y ∈ {−1, 1}, u ∈ R theu-basic block (BB) rado for pair(s, y) is

π
u
(s,y)

.
= u · liftX(y · s) +

p
∑

j=1

liftX(π
j

(s,y)) . (2)

Let J+
.
= J × {−1, 1}, andJ∗

.
= {(s, y) ∈ J+ : ∃j ∈ [p],πj

(s,y) 6= 0}. This latter set, which can
easily be computed from all peers, has cardinalm∗

.
= |J∗| ≤ m, and evenm∗ ≪ m when few

features are shared. For anyu ∈ R
m∗ , we letRu

B

.
= {πui

vi
, ∀i ∈ [m∗]} denote the set of eachui-BB

rado, each coordinate ofu being in one-one correspondence with an element ofJ∗ (represented by
vi). A superset ofRu

B
is interesting, that considers all sums of vectors fromRu

B
:

Ru
∗

.
=

{

∑

i∈U

π
ui
vi
, ∀U ⊆ [m∗]

}

. (3)

We callRu
∗ the set ofu-block rados. Notice that we may have|Ru

∗ | = Ω(2
∑

j |S
j |). It is therefore

intractable in general toexplicitly computeRu
∗ . However,|Ru

B
| = O(

∑

j |S
j|) and to compute it,

we just need the set ofπj

(s,y), hence a communication complexity that can be much smaller than
∑

j |S
j|.

3 Building and learning from BB rados

We address two questions: why/how we can use (basic block) rados to learn accurate classifiers,
and how we should fixu.
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Example vs rado losses Learningθ on S is done by minimizing a loss function. Here, we
consider the Ridge regularized square loss [14] (Γ is sym. positive definite, SPD),

ℓsql(S, θ; Γ)
.
=

1

m
·
∑

i

(1− yiθ
⊤xi)

2 + θ⊤Γθ . (4)

It is crucial to remark that this loss is described over the total sampleS of examples (see the red
rectangle in Figure 1). Thisis the loss we want to minimize, exactly or approximately. One reason
we choose this loss is that in the standard classification framework, it admits a simple closed form
solution:

θ⋆
ex

.
= argmin

θ
ℓsql(S, θ; Γ) =

(

XX
⊤ +m · Γ

)−1
πy , (5)

whereX
.
= [x1|x2| · · · |xm], and so,XX⊤ =

∑

i xix
⊤
i . Remark thatθ⋆

ex involves one rado,πy. For
anyP ⊆ {−1, 1}m, we letRS,P

.
= {πσ : πσ ∈ P} denote the set of rados that can be crafted from

P usingS.

Definition 2 TheM-loss overRS,P of classifierθ is:

ℓM(RS,P, θ)
.
= −

(

EP[θ
⊤
πσ]−

1

2
·VP[θ

⊤
πσ]

)

, (6)

where expectation and variance are computed with respect tothe uniform sampling ofσ in P.

What is inside the parenthesis looks like a (vanilla) Markowitz mean-variance criterion [19] —
“vanilla” because there is no variable coefficient for the risk aversion. What this means is that a
good classifier trained on rados should have large “return” and small “risk”, where the risk is the
variance of its predictions and the return is its inner product with the expected rado.

The Theorem to follow shows that what was known for the logistic loss in [21] also holds for
the square loss: there exists a loss described over rados,ℓM, such thatℓsql(θ) (dependences on
other parameters omitted) is equal to a strictly increasingfunction of ℓM(θ), for anyθ. Hence,
minimizing ℓsql(θ) over examples isequivalentto minimizingℓM(θ) for thesameclassifier. The
proof of the Theorem, elementary, is interesting in itself as it simplifies the long derivation for the
equivalence between rado and example losses in [20].

Theorem 3 LetΣm
.
= {−1, 1}m. Then, for anyS, anyΓ andany θ, ℓsql(S, θ; Γ) = 1 + (4/m) ·

ℓM(RS,Σm
, θ; Γ) with

ℓM(RS,Σm
, θ; Γ) = ℓM(RS,Σm

, θ) +
m

4
θ⊤Γθ . (7)
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Proof First, we remark thatEΣm
[θ⊤

πσ] = θ⊤
EΣm

[πσ] = (1/2) · θ⊤
πy, since each example

participates to half of the2m rados. Letting̃v
.
= 2m+2 · VΣm

[θ⊤
πσ], we also have

ṽ = 4 ·
∑

σ∈Σm

(

θ⊤
πσ −

1

2
· θ⊤

πy

)2

=
∑

σ∈Σm

(

∑

i

σiθ
⊤xi

)2

=
∑

σ∈Σm

[

m
∑

i=1

(θ⊤xi)
2 +

m
∑

i=1

∑

i′ 6=i

σiσi′θ
⊤xiθ

⊤xi′

]

= 2m ·
m
∑

i=1

(θ⊤xi)
2 +

m
∑

i=1

∑

i′ 6=i

vii′ · θ
⊤xiθ

⊤xi′ , (8)

with vii′
.
=
∑

σ∈Σm
σiσi′. Now, for anyi 6= i′, σiσi′ takes exactly the same number of times

value+1 and value−1, and sovii′ = 0, ∀i 6= i′. We get from eq. (8)VΣm
[θ⊤

πσ] = (1/4) ·
∑m

i=1(θ
⊤xi)

2 = (1/4) ·
∑m

i=1(yiθ
⊤xi)

2. Finally,

1 +
4

m
· ℓM(S,Σm, θ)

= 1−
2

m
·

m
∑

i=1

yiθ
⊤xi +

1

m
·

m
∑

i=1

(yiθ
⊤xi)

2

=
1

m
·
∑

i

(1− yiθ
⊤xi)

2
2 , (9)

and we get Theorem 3 by integrating Ridge regularization.

Hence, minimizing the Ridge regularized square loss over examples is equivalent to minimizing a
regularized version of theM-loss, over the complete set of all rados. This set has exponential size.
The usual trick would be to randomly subsample this huge set,along with proving good uniform
convergence bounds for theM-loss — this can be done in the same way as for the logistic loss
[21]. However, in the case of the square loss, greed pays twice: learning from all rados inRu

∗ may
be both cheap (computationally) and accurate.

Computation and optimality of Ru
∗ In our distributed context, we do not have access to all rados

because we do not assume that we have access to an entity matching function. Yet, we are going to
show a first result which is, in a sense,stronger: in very general settings, there existsu ∈ R

m∗ such
thatRu

∗ , systematicallyor in expectation, belongs toRS,Σm
. This set,Ru

∗ of potentially exponential
size, therefore gives us a set of rados that would have been built fromS, had we known the perfect
solution to entity matching. So, even without carrying out entity matching, we have access to a po-
tentially huge set of ”ideal” rados which we can use to learnθ via the minimization ofℓM(., θ; Γ).
Furthermore, there exists a simple algorithm to buildRu

B
. The communication protocol, in Figure

3 for p = 3 peers, summarizes what happens when peers have received message ”PART(s, y)”
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peer 1

peer 3peer 2

rado crafting

(s, y)

π
2
(s,y)

π
3
(s,y)

π
1
(s,y)

c ∈ N
d−dim(J)

Figure 3: Communication for one BB rado, with(s, y) ∈ J∗. Counterc is defined in Algorithm
RADOCRAFT (see text).

from a ”rado crafting” peer implementing Algorithm 1 below (” ” symbolizes message sending).
Specifically,Pj does the following:

• it computes and returnπj

(s,y); let Cj be the number of examples that are counted in the sum
in eq. (1);

• it updates counter vectorc: for each featurek 6∈ J it possesses in its database, it does
ck ← ck + Cj ;

Remark that the updates ofc can easily be done in parallel, as well as the computation of each
π
j

(s,y) for each peer. Lettingvi
.
= (s, y) ∈ J∗, the corresponding value ofui is given by:

ui = ũi
.
= (1⊤c)(|d| − dim(J))−1 , (10)

which is guaranteed to be non-zero sincevi ∈ J∗. We now show one of the main results of this
paper.

Theorem 4 In setting (VP), for anyp ≥ 2, any S, any J, the following holds on the output of
Algorithm 1:Rũ

∗ ⊆ RS,Σm
.

Proof (sketch) Letw ∈ R
m∗ be such thatwi is the number of examples inS that matchvi. The

proof follows two steps, (i)Rũ
B

= Rw
B

and (ii) Rw
∗ ⊆ RS,Σm

. Then, (i) is immediate; for (ii),

9



Algorithm 1 RADOCRAFT(P1 ,P2, ...,Pp)

Input PeersP1,P2, ...,Pp;
Step 1: LetRũ

B
← ∅;

Step 2:for s ∈ J, y ∈ {−1,+1}
2.1: Letπ← 0 ∈ R

d, c← 0 ∈ N
d−dim(J);

2.2: for j ∈ [p]
2.2.1:π← π+ liftX(PART(s, y) Pj);

2.3: Letũ← (1⊤c) (d− dim(J))−1;
2.4:Rũ

B
← Rũ

B
∪ (ũ · liftX(y · s) + π);

Return Rũ
B
;

the proof follows once three simple facts are established inthe (VP) setting: (a) the true entity
matching exists, (b) anywi-BB rado for pairvi

.
= (s, y) would be obtained as a rado summing

the contribution of all examples inS matching the corresponding signatures and classy, (c) we
obtainRũ

B
⊆ RS,Σm

, from which follows the Theorem’s statement with eq. (3) andthe fact that any
sum of a subset of rados inRũ

B
would also be inRS,Σm

since an example cannot match two distinct
couples (signature, class).

Hence, in the (VP) setting, Algorithm 1 always provides the basis for a (possibly exponential-
sized) setRũ

∗ of these ”ideal” rados. Let us now generalize Theorem 4 to (G), which is obviously
more difficult to tackle since (i) there may be a huge amount ofmissing data (⊥ in Figure 1) and
(ii) there would be no one-one correspondence between the peers’ examples in general. Yet, there
is a interesting property which can be shown in the following(R)andomized model: each peer’s
features remain fixed (and all peer’s features comply with (G)), but there exists a fixedη ∈ [0, 1]m

such that examplei has probabilityηi to be seen by a peer. LetS denote the ”expected” sample,
where each example is weighted by its probability. For any signatures and classy, E[π(s,y)]
denotes the expected rado put inRũ

B
in step 2.4 of Algorithm 1.

Theorem 5 Under (R), ∀(s, y) ∈ J+, E[π(s,y)] ∈ RS,Σm
.

(Proof omitted) Hence, under setting (G), if examples are ”seen” independently at random by
peers, the expected output of Algorithm 1 still meets the guarantees of Theorem 4 with respect
to the expected sample. The fact thatRũ

B
⊆ RS,Σm

from Theorem 4 is also a consequence of
Theorem 5 forη = 1. Finally, there is one way to relax further assumption (G), which is to let
each feature not shared by all peers to be shared by any subsetof peers. In this case, it is possible to
modify RADOCRAFT so that itstill builds rados that would meet Theorem 5. This mainly requires
a careful adjustment of each counterc.

Learning from all rados ofRũ
∗ The questions that remain are how we minimize the regularized

M-loss and, more importantly, what subset of rados fromRũ
∗ we shall use. As already discussed,

we choose ”greediness” against randomization [21]: instead of picking a (small) random subset of
Rũ

∗ , we want to use themall because we know that all of them are ”ideal” or close to being so via
Theorems 4, 5. Recall that|Rũ

∗ | may be of exponential size (inm, d, |J∗|, etc.). We now show
that if we consider all ofRũ

∗ , the optimalθ⋆
rad of ℓM(Rũ

∗ , θ; Γ) has an analytic expression which

10



Algorithm 2 DRL(P1,P2, ...,Pp; Γ)

Input PeersP1,P2, ...,Pp, SPD matrixΓ, γ > 0;
Step 1:B← Column(RADOCRAFT(P1,P2, ...,Pp));
Step 2:θ ←

(

BB
⊤ + γ · Γ

)−1
B1;

Return θ;

dependsonly on the rados ofRũ
B
. In short, it is evenfasterto compute thanθ⋆

ex from S in eq. (5),
and can be directly computed from the output of Algorithm 1.

Theorem 6 Letθ⋆
rad

.
= argminθ ℓM(R

ũ
∗ , θ; Γ) (eq. (7)). Then

θ⋆
rad =

(

BB
⊤ + dimc(B) · Γ

)−1
B1 , (11)

whereB stacks in columns the rados ofRũ
B
, anddimc(B) is the number of columns ofB.

Proof The proof uses the following trick: consider any sampleS′ such that its edge vectors match
the basic block rados. Remark thatXX

⊤ =
∑

i(yixi)(yixi)
⊤ in eq. (5) depends only on edge

vectors, and so, sinceπy = B1, the optimal square loss classifier onS′ is θ⋆
rad in eq. (11), which,

through Theorem 3, is also the optimal classifier onℓM(R
ũ
∗ , θ; Γ).

Whenm∗ = m, each element ofRũ
B

is in fact an example, and we retrieve eq. (5). One consequence
of Theorem 6 is the following convergence property which we sketch: in the (VP) setting, for any
ε ≥ 0, there exists a minimal size forJ∗ such thatθ⋆

rad will be ε-close toθ⋆
ex, where the closeness

can be measured by‖θ⋆
rad − θ⋆

ex‖2 or |cos(θ⋆
rad, θ

⋆
ex)|. The statement of DRL (Distributed Rado-

Learn) is given in Algorithm 2. In Step 1, ”column(.)” takes a set of vectors and put them in
column in a matrix.

4 Experiments

Algorithms We have evaluated the leverage that DRL provides compared tothe peers, that
would learn using only their local dataset. Each peerPj estimates learns through a ten-folds strati-
fied cross-validation (CV) minimization ofℓsql(Sj , θ;γ · Iddj ) (see eq. (5)), whereγ is also locally
optimized through a ten-folds CV in setG

.
= {.01, 1.0, 100.0}. DRL minimizesℓM(Rũ

∗ , θ; Γ)
(solution in eq. (11)) whereRũ

B
is built using RADOCRAFT, with the set of all peers as input.

We have carried out a very simple optimisation of the regularisation matrix of DRL as a di-
agonal matrix which weights differently the shared features, Γ

.
= Diag(liftX(projJ(1))) + γ ·

Diag(liftX(projX\J(1))), for γ ∈ G. γ is optimized by a 10-folds CV onI∗. CV is performed
on radosas follows: first,Rũ

B
is split in 10 folds,Rũ

B,ℓ, for ℓ = 1, 2, ..., 10. Then, we repeat for
ℓ = 1, 2, ..., 10 (and then average) the following CV routine:

1. DRL is trained usingRũ
B
\Rũ

B,ℓ;

2. DRL’s solution,θ⋆
rad, is evaluated on “test rados” by computingℓM(Rũ

B,ℓ, θ
⋆
rad; Γ).

The expression ofΓ for rados exploits the idea that the estimations related to ashared feature can
be much more accurate than for another, non shared feature.
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Domain m d minj p̂err(Pj) p dim(J) Results
Wine 178 12 0.07 {2, 3, ..., 8} {1, 2, 3, 4} Table 12
Sonar 208 60 0.29 {2, 3, ..., 16} {1, 2, ..., 20} Table 6
Ionosphere 351 33 0.20 {2, 3, ..., 9} {1, 2, ..., 9} Table 8
Mice 1 080 77 0.30 {2, 3, ..., 20} {1, 2, ..., 20} Table 4
Winered 1 599 11 0.26 {2, 3, ..., 7} {1, 2, 3, 4} Table 9
Steelplates 1 941 33 0.16 {2, 3, ..., 14} {1, 2, ..., 5} Table 14
Statlog 4 435 36 0.05 {2, 3, ..., 30} {1, 2, ..., 5} Table 13
Winewhite 4 898 11 0.32 {2, 3, ..., 7} {1, 2, 3, 4} Table 10
Page 5 473 10 0.21 {2, 3, ..., 6} {1, 2, 3, 4} Table 3
Firmteacher 10 800 16 0.26 {2, 3, ..., 7} {1, 2, ..., 7} Table 7
Phishing 11 055 30 0.11 {2, 3, 4, 5} {1, 2, 3, 4} Table 11

Table 2: UCI domains used in our experiments [1], with for each the indication of the total number
of features (d), examples (m) and the error of the optimal peer in hindsight obtained in our exper-
iments,minj p̂err(Pj). Two of the right columns present, for each domain, the rangeof values for
the number of peers (p) and the number of shared features (dim(J)) considered. Experiments were
performed consideringall possible combinations of values ofp anddim(J) within the allocated
sets. The rightmost column points to the Table collecting specific results for each domain.

Domain generation we have used a dozen UCI domains [1], presented in Table 2. Foreach
domain, we have varied (i) the number of peersp, (ii) the number of shared featuresdim(J), and
(iii) the numberb of numeric modalities (”bins”) each shared feature was reduced to (controls the
size ofI∗). The training sample is split among peers, each keeping record ofI and its own features
(non shared features are evenly partitioned among peers). Finally, for someps ∈ [0, 1], each peer
Pj selects a proportionps of its examples index and for each of them, another peerPj′, chosen at
random, gets the example as well (on its own set of featuresXj′). Whenps = 0, this is setting
(VP). We then runall algorithms foreachvaluep, dim(J), b, ps. As we shall see,b appears to have
a relatively small influence compared to the other factors, so we mainly report results combining
various values forp, dim(J) andps, for the range of values ofp, dim(J) specified in Table 2, and
for ps ∈ {0.0, 0.2}. We have chosenb = 4 for all domains, except when it is not possible (if
for example all features are boolean), in which case we pickb = 2. Table 2 also provides the
smallest test error obtained for a peer among all runs for each domain: this is an indication of the
room of improvement for DRL, and it also shows that in general, at least some (and in fact most)
peers were always very significantly better than random guessing, a safe-check that DRL is not
just beating unbiased coins.

Metric We used two metrics. The first,

∆
.
= p̂err(DRL)−min

j
p̂err(Pj) (∈ [−1, 1]) , (12)

is the test error for DRL minus that of theoptimalpeerin hindsight(since we consider the peer’s
test error). when∆ < 0, DRL beatsall peers. For example, Table 3 (left) provides the results

12



obtained on UCI domain page. We see that for almost all combinations ofp anddim(J), DRL beats
all peers.

To evaluate the statistical significance, we compute

q
.
= proportion of peersstatisticallybeaten by DRL(∈ [0, 1]) . (13)

To compute the test, we use the powerful Benjamini-Hochbergprocedure on top of pairedt-tests
with q∗ = p-val = 0.05, [3]; q = 0.8 surface helps see when DRLstatistically beats all peers.
For example, Table 3 (right) displays that DRL does not always statisticallybeat all peers when
∆ < 0, yet it manages to stastically beat all of them in approximately one third to one half of the
total tests, which implies that, on this domain, there is a significant chance that DRL improves on
the peers, regardless of their number and the number of shared features.

Results Due to the large number of domains considered, results are split among different tables,
one for each domain in general, in Tables 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14 (also referenced
in Table 2). All domains display that there exists regimes (p, dim(J)) for which DRL improves
on all peers, in some cases significantly. Sometimes, the improvement is sparse (phishing), but
sometimes it is quite spectacular and in fact (almost) systematic (page, ionosphere, steelplates).
domain steelplate’s case is interesting, since the so-calledOracle, i.e. the learner that leans from the
complete training foldbeforeit is split among peers — and therefore knows the solution to entity
matching —, has for this domain almost optimal error, but local peers are in fact very far from
this optimum. This indicates that many features, properly combined, are necessary to attain the
best performances. DRL’s performances are close to the Oracle, which accounts for the huge gap
in classification compared to peers — sometimes, DRL’s test error is smaller than that of thebest
peer by more than 20% —, and so it seems that DRL indeed successfully bypasses entity matching
to learn a classifier that almost matches the Oracle’s performances, and therefore represents a very
significant leverage of each peer’s data.

To drill down into more specific results, Table 15 (left) displays that binning indeed does not
affect significantly DRL on average, which is also good news,since it means that there is no
restriction on the shared features for DRL to perform well: shared features can be binary, or
categorical with any number of modalities. Table 16 displays that while the CV tuning ofΓ offers
leverage to DRL (vs Γ = Idd) in general (firmteacher), there are some (rare) domains (mice)
on which relying on the simplestΓ = Idd improves upon the results of CV. This, we believe,
comes from the fact that CV as we have carried out is certainlynot optimal because one rado
can aggregate any number of examples. Last, Table 15 (right)drills down a bit more into the
performances of DRL with respect to those of the Oracle on a domain for which DRL obtains
somehow “median” performances among all domains, sonar. The Oracle (10-folds CV from the
total ER’edS) is idealisticsince in general we do not know the solution to ER, yet it givesclues on
how close DRL may be from the ”graal”. Interestingly, DRL comes frequently under the statistical
significance radar (α = 0.05). In notable cases (more frequent asps increases), DRL beats Oracle
— but not significantly. Aside from theory, these are good news as DRL does not assume ER’ed
data, and uses an amount of data which can be∼ p2 timessmallerthan Oracle.
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Table 3: Results on domain page: plots of∆
.
= p̂err(DRL) − minj p̂err(Pj) (left) andq = prop.

peerssimultaneouslybeaten by DRL (right) as a function of the number of peersp and the number
of shared featuresdim(J). Top: proportion of shared examplesps = 0.0 (setting (VP)); bottom:
proportion of shared examplesps = 0.2. The isoline on the left plots is∆ = 0.

5 Discussion and related work

We remark that our framework is not formally comparable withER, since the two address different
problems. On one hand, ER has a much broader applicability than the problem object of this paper;
learning on distributed datasets is less general than ER: infact, we show a solution that bypasses
ER. On the other hand,learning-basedER [5] as well as manifold alignment techniques [15] are
viable only knowing some ground truth matches — which are notrequired for working with rados.
From another perspective, in concert with theopen issuesin [13], we study ER as component of a
pipeline for classification, and highlight how matching is not necessary for the purpose of learning.

In spite of those considerations, we can still draw comparisons with methods that learn on
top of data merged through ER (Table 5). In both settings, no ID is shared between datasets but
some attributes must be so, in order to allow entities comparison for matching or for building
rados. Obviously, entity matching does not require the labels to be one of those shared attributes,
while this is a fundamental hypothesis of our approach. Although, it is not as restrictive as may be
expected at first: if just one peer has labels, thenall can obtain labels on their own data, vialearning
from label proportions[23, 24]: the label handling peer computes the label proportions per each
block; the “bags” are defined by examples matching a particular signature. Proportions are then
shared among all other peers, which can train a classifier with them so as to obtain approximate
labels for each observation.

To discuss time complexity, let us consider a simplified problem with only 2 peers withm
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Table 4: Results on domain mice, using the same convention asTable 3.

examples each in the (VP) scenario. In terms of complexity of fusion, if we assume that examples
are uniformly distributed in the blocks, each block has sizem/m⋆. DRL builds each block rado
in timeO(m/H), with total cost linear inm. ER takesO(m2/H2 · Tsim) to match entities in each
of theH blocks, whereTsim is the cost of evaluation a similarity function; learning-based methods
spend additional time for training; advanced blocking strategies can reduce the average complexity
[4, 32, 31].

Most literature on distributed learning is concerned with limiting communication and designing
optimal strategies for merging models [2, 17]; beside that,previous works focus on horizontal split
by observations, with few exceptions [18]. In contrast, we exploit what is sufficient to mergeabout
the data. The communication protocol is extremely simple. Once rados are crafted locally, they
are sent to a central learner in one shot. By Theorem 6, onlyd-dimensionalm⋆ blocks rados are
needed.Data is not accessed anymoreand learning takes place centrally. Moreover, rados help
with data compression, beingm⋆ × d, m⋆ ≪ m the problem size. ER needs to transfer and learn
from all entities, for a total size ofm× d.

Learning on data described by different feature sets is the topic of multiple view learning and
co-training [7, 26]. To the best of our knowledge, co-training with unknown matches has not been
addressed before. [8] presents a multi-view distributed algorithm with co-regularization; although
it requires matches for all unlabelled examples.

In settings with multiple data providers, privacy can be crucial [2]. The agents have to trade off
model enhancements and information leaks. A learner receives rados to train the model; this can
be done by one of the agents, or by a third party — paralleling multi-party ER scenarios [9]. The
only information sent through the channel consists of rados, while examples, with their individual
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Metric ER +Learning RADOCRAFT + DRL
Assumption: shared IDs no no
Assumption: some shared variables necessary necessary
Assumption: shared labels no may be relaxed
Fusion / Rados crafting O(m2/m⋆ · Tsim) O(m)
Communication m× d m⋆ × d, m⋆ ≪ m
Learning problem m× d m⋆ × d, m⋆ ≪ m
Privacy complex many guarantees

Table 5: Multiple metrics of comparison between learning ontop of ER and our approach. Time
complexity are estimated for 2 peers in the (VP) scenario, assuming all blocks of equal size. See
Section 5 for details.

sensible features, are never shared. Hardness results on reconstruct-ability of examples have been
proven, along with NP-HARD characterizations, and protection in the sense of differential privacy
[21]. Furthermore, due to their compressive power, rados represent an alternative to bulk data
collection [27]: storing examples becomes superfluous. Regarding ER, since matching has the
potential of de-anonimizing the entities, privacy is usually a very relevant issue to address [9].
However, solutions are not straightforward, as proven by the vast amount of research on the topic
[30]; techniques based on partial share of attributes, anonymization or hashing can severely impair
the process.

Even assuming labelled examples, no (observation, label) pair is actually available for training,
and thus the task can be seen as weakly supervised [12, 22]. Although, a set of aggregate quantities,
i.e. sums of examples over subsets of the total sample (the rados), turns out to be enough for
learning. Theorem 3 expresses a form ofsufficiencyof the whole set of rados with regard to the
square loss; a similar property is proposed for logistic loss in [21]. One of the2m rados themean
operator, µS

.
= (1/m) · πy, is formally proven asufficient statisticsfor the class for a wide set of

losses [23, 22]. This work, along with the cited predecessors, shows how the interplay between
aggregate statistics and losses can lead to effective solutions to difficult learning problems.

6 Conclusion

The key message of our paper is that Entity Matching addresses a very generalbut difficult prob-
lem, and in the comparatively restricted context of supervised learning from distributed datasets,
accurate learning evading the pitfalls of Entity Matchingispossible with Rademacher observations.
Rados have another advantage: they offer a cheap, easily parallelizable material which somehow
“compresses” examples while allowing accurate learning. They also offer readily available solu-
tion for guarantees private exchange of data in a distributed setting. Finally, some domains display
that there is significant room space for improvement of how cross-validation of optimized param-
eters are handled. This interesting problem comes in part from the fact that statistical properties of
cross-validation on rados arenot the same as when carried out on examples; this particular aspect
will deserve further analysis in the future.
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Table 6: Results on domain sonar, using the same convention as Table 3.
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Table 11: Results on domain phishing, using the same convention as Table 3.
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Table 12: Results on domain wine, using the same convention as Table 3.
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Table 14: Results on domain steelplates, using the same convention as Table 3.
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better performances of the Oracle (but not statistically better). Points in the white area (red) denote
statisticallybetter performances of the Oracle (filled points:ps = 0.2; empty points:ps = 0.8).

 2  3  4  5  6  7
#peers  1

 2
 3
 4
 5
 6
 7

#shared

-0.1
-0.05

 0
 0.05
 0.1

∆

2  5
 10

 15
 20

#peers 1
 5

 10
 15

 20

#shared

-0.05
 0

 0.05
 0.1

∆

Table 16: Results of the dummy regularized DRL (Γ = Idd) on domains firmteacher (left) and
mice (right), following the convention of Table 8 (ps = 0.2).
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