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A Hybrid Loss for Multiclass
and Structured Prediction

Qinfeng Shi, Mark Reid, Tiberio Caetano, Anton van den Hengel, and Zhenhua Wang

Abstract—We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of a log loss
for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient
condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between
labels—specifically, the gap between the probabilities of the best label and the second best label. We also prove Fisher consistency is
necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically
performs least as well as—and often better than—both of its constituent losses on a variety of tasks, such as human action recognition.
In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and

structured prediction.

Index Terms—Conditional random fields, support vector machines, hybrid loss, fisher consistency, structured learning

1 INTRODUCTION

ONDITIONAL Random Fields (CRFs) and Support Vector

Machines (SVMs) can be seen as representative of two
different approaches to classification problems. The former
is purely probabilistic—the conditional probability of classes
given each observation is explicitly modelled—while the
latter is not—classification is performed without any
attempt to model probabilities. Both approaches have their
strengths and weaknesses. CRFs [10], [16] are known to
yield the Bayes optimal solution asymptomatically but do
not have known tight generalisation bounds. In contrast,
SVMs have tighter generalisation bounds which typically
shrink as the margin grows, and can easily incorporate
interesting label-cost such as F1 score or hamming distance
in structured cases. But SVMs could be inconsistent when
there are more than two classes [11], [18].

Despite their differences, CRFs and SVMs appear very
similar when viewed as optimisation problems. The most
salient difference is the loss used by each: CRFs are trained
using a log loss while SVMs typically use a hinge loss. In an
attempt to capitalise on their relative strengths and avoid
their weaknesses, we propose a novel hybrid loss which
“blends” the two losses. After some background (Section 2)
we provide the following analysis: We argue that Fisher
Consistency for Classification (FCC)—a.k.a. classification
calibration—is too coarse a notion and introduce a distribu-
tion-dependent refinement called Conditional Fisher
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Consistency for Classification (Section 3). We prove the
hybrid loss is conditionally FCC and give a noise condition
that relates the hybrid loss’s mixture parameter to a margin-
like property of the data distribution (Section 3.1). We then
show that, although FCC is effectively a non-parametric
condition, it is also a necessary condition for consistent risk
minimisation using parametric models (Section 3.2). Finally,
we empirically test the hybrid loss on various domains
including multiclass classification, text chunking, human
action recognition and show it consistently performs as least
as well as—and often better than—both of its constituent
losses (Section 5).

2 Losses

In classification problems observations x € X are paired
with labels y €)Y via some joint distribution D over
X x Y. We will write D(z,y) for the joint probability and
D(y|z) for the conditional probability of y given z. Since
the labels y are finite and discrete we will also use the
notation D,(z) for the conditional probability to empha-
sise that distributions over ) can be thought of as vec-
tors in R* for k = |)|. We will also use p and ¢ to denote
distributions over ) but reserve their use for distribu-
tions generated by models.

2.1 Multiclass Prediction
When the number of possible labels is £ = || > 2 the clas-
sification problem is known as a multiclass classification
problem.

Given m training observations S = {(x;,y;)} ', drawn i.i.
d. from D, the aim of the learner is to produce a predictor
h: X — Y that minimises the misclassification error ep(h) =
Pplh(z) # y]. Since the true distribution is unknown, an
approximate solution to this problem is typically found by
minimising a regularised empirical estimate of the risk for a
surrogate loss (. Examples of surrogate losses will be
discussed below.

0162-8828 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Once a loss is specified, a solution is found by solving

m

mln—ZZ (z:),y:) + Q(f), (1)

where each model f : X — RF assigns a vector of scores f(z)
to each observation and the regulariser €(f) penalises
overly complex functions. A model f found in this way can
be transformed into a predictor by defining h;(z) =
argmax, .y f,(r) where ties are broken in some arbitrary but
deterministic way (see Section 3.2 for details). We will over-
load the definition of misclassification error and sometimes
write ep( f) as shorthand for ep(hy).

A common surrogate loss for multiclass problems is a
generalisation of the binary class hinge loss used for
SVMs [6]:

gH(fvy) = []‘_M(fvy)}-w (2)
where (2], = z for z > 0 and is 0 otherwise, and M (f,y) =
fy —maxy, fy is the margin for the vector f € R*. Intui-
tively, the hinge loss is minimised by models that not only
classify observations correctly but also maximise the differ-
ence between the highest and second highest scores
assigned to the labels.

While there are other, consistent losses for SVMs [11], [18],
these cannot scale up to a large k. For example, the multiclass
hinge loss >, [1 + f;(x)], is shown to be consistent in [11].
However, it requires evaluating f on all possible labels
except the true y. This is intractable for labels where the pos-
sible assignments grow exponentially. The other known and
consistent multiclass hinge losses have similar intractability.

2.2 Structured Prediction

In the multiclass case {(z;,v;)};~,; are assumed i.i.d. How-
ever, in many cases, they are not i.i.d. Structured prediction
[1] can deal with these cases by grouping correlated labels
to form a structured label y. Here the structured label y can
be any object associated with x. For example, for the auto-
mated paragraph breaking problem, the input x is a docu-
ment, and the output y is a sequence whose entries denote
the beginning positions of the paragraphs. For image seg-
mentation, the input z is an n; by ny image, and the struc-
tured label y is a 2-D lattice {y"/},_; , .- - The
framework of Probabilistic Graphical Models (PGMs) [8]
provides a principled way of modelling the dependencies
of the components of y. For a y with L components i.e.,
y= (v, 9% ..., y"), the graph of PGM G = (V, ) consists of
the node set V = {1,...,L} and the edge set £ that reflects
the dependencies. Assuming each component 3 € {1,...,
c} for all j, there are k = ¢ many possible assignments for
y. In other words, such a structured label y can be seen as a
multiclass problem with k£ many classes in theory, although
many multiclass algorithms will be intractable in the struc-
tured case.

Once the structured labels are formed, we can assume
the structured input-output pairs {(z;,v;)};~, are i.i.d. from
some joint distribution. The predictors h or the models f
can be learned in a fashion similar to (1). The models are
usually specified in terms of a parameter vector w € R" and

a feature map ¢:AXxY—R" by defining f,(z;w)=
(w, ¢(z,y)) and in this case the regulariser is Q(f) = 3 [|w|’
for some choice of A € R. This is the framework used to
implement the SVMs and CRFs used in the experiments
described in Section 5. Although much of our analysis does
not assume any particular parametric model, we explicitly
discuss the implications of doing so in Section 3.2.

2.3 Probabilistic Interpretation and the Hybrid Loss
CREFs are based on a model whereby

n__ ep(fy(@)
py(x; f) = S exp(fy(@) 3)
and use the log loss
lr(p,y) = —Inpy.

This loss penalises models that assign low probability to
likely labels and, implicitly, that assign high probability to
unlikely labels.

We can see that (3) provides a probabilistic interpretation
of the scores of f,(z). It is easy to show that under this inter-
pretation the hinge loss for p = p(-; f) is given by

lu(p,y) = [1 —In L] .

MAXyy/ 2y Py

We now propose a novel hybrid loss that is a combination
of the hinge and log losses

[oz(pvy) :oth(p,y)-ﬁ-(l—a)/H(p,y), (4)

where the mixture of the two losses is controlled by a
parameter « € [0, 1]. Setting « = 1 or o = 0 recovers the log
loss or hinge loss, respectively. The intention is that choos-
ing « close to 0 will emphasise having the maximum gap
between the largest and second largest label probabilities
while an « close to 1 will force models to prefer accurate
probability assessments over strong classification.

This family of hybrid losses is similar to a recent pro-
posal by Zhang et al. [20]. They also define a single
parameter family of loss functions called coherence func-
tions that interpolate between hinge loss and a loss that
is closely related to loss based on log-likelihood. Like the
loss presented here, their losses are surrogates for 0-1
loss and both families have the hinge loss as a limit
point. A key difference between the two proposals has to
do with the consistency of losses in each family: the
coherence losses are all Fisher consistent for probability
estimation whereas the hybrid losses satisfy a weaker
form of consistency which we call conditional Fisher
Consistency for Classification and analyse below.

Despite of the properties of the coherence functions,
using them in structured cases is intractable. They require
the evaluation of a function B;(z) for all classes i.e.,
j=1,...,k see Algorithm 1 step P (c) in [20]. Note that &
grows exponent1ally in structured cases. They encounter
the same problem as other consistent multiclass SVMs. Our
hybrid loss does not have this problem.
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3 FISHER CONSISTENCY FOR CLASSIFICATION

A desirable property for a loss is that, given enough
data, the models obtained by minimising the loss at each
observation will make predictions that are consistent
with the true label probabilities at each observation. We
are mainly concerned with distributions D(z) over the
set )V for some fixed (but irrelevant) . We will therefore
overload D and use it to denote a distribution over ).
Whether D represents a distribution over labels or a dis-
tribution over labels and observations should be clear
from context.

We say a vector f € RY is aligned with a distribution D
over )) whenever maximisers of f are also maximisers for
D. That is, when argmax,y f, C argmax,cy D,. Since the
probabilistic models described in Section 2.3 pass the com-
ponents of a vector f(z) through exp and rescale, it is clear
that a prediction f(z) is aligned with D if and only if
py(; f) is aligned with D. Because of this correspondence,
the following definitions of consistency are equivalent
regardless of whether general models and losses or their
probabilistic counterparts are used.

If, for all label distributions D, minimising the condi-
tional risk L(f, D) = E,.p[¢(f,y)] for a loss ¢ yields a vector
f* aligned with D we will say ¢ is Fisher consistent for classifi-
cation (FCC)'—or classification calibrated [18]. This is an
important property for losses since it is related to the
asymptotic consistency of the empirical risk minimiser for
that loss [18, Theorem 2].

The standard multiclass hinge loss ¢y is known to be
inconsistent for classification when there are more than two
classes [11], [18]. The analysis in [11] shows that the hinge
loss is inconsistent whenever there is an instance x with a
non-dominant distribution—that is, D,(z) < 1/2 for all
y € Y. Conversely, a distribution is dominant for an instance
x if there is some y with D,(z) > 1/2. In contrast, the log
loss used to train non-parametric CRFs is Fisher consistent
for probability estimation—that is, the associated risk is
minimised by the true conditional distribution—and thus
¢ is FCC since the minimising distribution is equal to D(x)
and thus aligned with D(z).

3.1 Conditional Consistency of the Hybrid Loss
In order to analyse the consistency of the hybrid loss we
require the following refined notion of Fisher consis-
tency. If D= (D,,...,Dy) is a (conditional) distribution
over the labels ) then we say the loss ¢ is conditionally
FCC with respect to D whenever minimising the condi-
tional risk w.r.t. D, L(f, D) = E,.p[¢(f,y)] yields a predic-
tor f* that is aligned with D. Of course, if a loss ¢ is
conditionally FCC w.r.t. D for all D it is, by definition,
(unconditionally) FCC.

The following theorem provides sufficient conditions on
the hybrid parameter « in terms of a label distribution D so
that the hybrid loss /, is conditionally FCC w.r.t. D.

1. Note that the Fisher consistency for classification is weaker than
Fisher consistency for density estimation. The former requires the same
prediction only, while the latter requires the estimated density is the
same as the true data distribution. In this paper, we focus on the former
only. For an analysis of Fisher consistency for density estimation, we
refer the reader to [15].
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Theorem 1. Let D = (Dy, ..., Dy,) be a distribution over ) and
let Dyyoq = max, D, be the largest probability assigned to any
y € Y. Also let Yyap = {y : Dy = Dyay } be the set of labels
with maximal probability and Dy, = max, ¢y, D, be the
second largest probability assigned to a label, or D,y = o0 if

Yimaz = Y. Then the hybrid loss £, is conditionally FCC for D
whenever D,yq, > 1 or
Dmnm - Dnemt
1l
¢ T I, ©)

The proof is by contradiction and proceeds at a high level
by showing that if the distribution D satisfies D, > % or (5)
but the minimiser p of the risk L, (p, D) is not aligned with D
we derive a falsehood. The argument is broken into two
cases: when the risk minimising distribution p has a unique
maximum probability and when it does not. In both cases
we show how to construct an alternative distribution ¢ (that
depends on D) such that L,(q, D) < L(p, D), yielding the
required contradiction. In the first case, ¢ is obtained by
swapping the most probable label of p with that of D. In the
second case (when p has two or more most probable labels),
q is obtained by perturbing p slightly towards D.

Proof. Since we are free to permute the labels within Y, we
will assume without loss of generality that there are ¢ ties
for the most probable label and that Y., ={1,...,t}
and so D; = --- = D;. Defining Ly(p, D) = Ey-p[la(p,y)],
the proof now proceeds by contradiction by assuming
that there is some minimiser p = argmin, L, (g, D) that is
not aligned with D. For this to occur there must be some
label y* > t such that p,« is as least as large as pi,...,p;.
For simplicity, and again without loss of generality, we
will assume that y* is the label with the largest probabil-
ity according to p (that is, y* € argmax, p,). We are also
free to have permuted labels within },,,, to ensure
1 € argmax,cy, —py.

The first case to consider is when p,+ is strictly larger
than p;. Here we construct a new distribution ¢ that
swaps the values of p, and p, and leaves all the other
values unchanged. That is, ¢, = p,+, ¢,» = p; and ¢, = p,
forally € Y — {t,y*}. Intuitively, we will now show that
this new point is “closer” to D and therefore the CRF
component of the loss will be reduced while the SVM
component of the loss won't increase. To do so, we con-
sider the difference in conditional risks:

M=

La(p, D) = Lo(q, D) = > Dy.(ba(p, y) — La(q: y)),
= Di.(la(p, 1) — la(g, 1)),
+ Dy (f (.y") = la(a,y")),
(Df )(f (Qay ) 2ot(qvt))>
since £y(p,t) = ly(q,y") and ly(p,y*) = lu(q,t) and the

other terms cancel by construction. Since, by assumption
y* > t, we have D, — Dy > 0, so all that is required
now is to show that flo(q,y") —lu(q,t) = aln b+ (1
—a)(u(q,y*) — Lu(g,t)) is strictly positive. !
Since py =q > q, for y#t we have In - &> 0,

Ly(q,y") = [17111‘1;} > 1, and (y(q,t)= [lfln ! }+<

+
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1,and so ¢y (q,y*) — lu(q,t) > 1 —1=0.Thus, ly(q, ") —
ly(g,t) > 0 as required. This gives a contradiction and

thus establishes the theorem in the case where p,« > p;.

Now suppose that p,- = p,. That is, there is a tie for the
maximum probability label in p and at least one of these
maximising labels coincides with the maximising labels
of D. In this case we show that a slight perturbation of p
yields a new distribution ¢ with a strictly smaller loss. To
define ¢ welete > 0 and set ¢+ = p,» + €, ¢ = p, — ¢, and
qy = py for all other y # ¢,3*. Now, for y # ¢, we have
Lr(p,y) — Lr(q,y) = 0. Also for y # t,y* we have p; > p,
and ¢, > q, thus lu(p,y) — lu(qy) =1 —lnI;—i’ —(1 -
ln%) = lnq% > 1 —%: —& since —Inz > 1-z for
z >0 and ¢y =py +€=p +e€ By substituting this
inequality into the definition of ¢,, we see that for all
y#Fty

-«
)~ lalay) > — =, (6)
h
For the label y* we see that the log loss component of
l, satisfies (r(p,y") —lr(q,y") = —In2L > WD —
By By Ay

and the difference between the hinge loss components

becomes £ (p,y") — lu(q,y") = (1 —In"L) — (1 —In) =

a
qy* Poy* € .
lni = lnp-;ie since p, = pi. Thus Lu(p,y") — lu(q, y")
Py =€ 2
> 1 e = pprer And so

o 2(1 — )
_l’_
Py + € Py te€

2 — 2 —
€ s a7 (7
py* + € py*

éa(pay*) _Eﬁt(%y*) > €

since € > 0 and « < 1. Finally, for the label ¢ we have

_ — _qpPt ~ %Pt —e _ _—e ; _
Cr(p,t) — lr(g,t) = —Inkt > 4dt = = =, since ¢ =
pr—e and p, =pg. Similarly, £y(p,t) —lu(g,t) =

Gy —2¢
(I-Inf)—(1-In) = lnq‘g >1-2= F{" Thus,
o 2(1 —«
éa(pvt) _éa(qvt) > _€|:p +g:|
TR )
2—« 2—«
= —¢ > —€
py* — € py*

Putting the inequalities (6), (7) and (8) together yields
Lot(p7 D) - Lot(Qa D)

2—« 2—« 1l—«
> D€ — Dye — D,e
o] - pe ] - X pel

Dy

YAyt
= pj* [(Dy* ~D)2—-a)—(1-Dy — D)1 - a)]’
= pEX [Dy* — D+ (1- Ol)(QDy* _ 1)]

Since D, > D;, when D, 2% the final term is non-
negative without any additional constraint on « € [0, 1]
and since D, > D, the difference in risks is thus

positive. When D, < ; the difference in risks is positive
whenever
Dy — D,

l1——"
a > T—2D, 9)

Observing that D,,,, = D, and D,,.,; = D, completes the
proof. a

Theorem 1 can be inverted and interpreted as a constraint
on the conditional distributions of some data distribution D
such that a hybrid loss with parameter « will yield consistent
predictions. Specifically, the hybrid loss will be consistent if,
for all z € X such that ¢ = D(z) has no dominant label (i.e.,
Dy(z) <iforally € Y), the gap Dy, (z) — Dy, (x) between the
top two probabilities is larger than (1 —a)(1 —2D,,(x)).
When this is not the case for some z, the classification prob-
lem for that instance is, in some sense, too difficult to disam-
biguate. In this sense, the bound can be seen as a property
on distributions akin to Tsybakov’s noise condition [4]. Both
conditions are non-constructive as they depend on the
unknown distribution but provide some guidance as to the
effect of parameter choices (i.e., « for the hybrid loss and reg-
ularisation constants for SVMs). Exploring the relationship
between conditional FCC and the Tsybakov noise condition
is the focus of ongoing work.

3.2 Parametric Consistency

Since Fisher consistency is defined point-wise on observa-
tions, it is not directly applicable to parametric models as
these enforce inter-observational constraints (e.g., smooth-
ness). Abstractly, assuming parametric hypotheses can be
seen as a restriction over the space of allowable scoring func-
tions. When learning parametric models, risks are minimised
over some subset JF of functions from X — R” instead of all
possible functions. We now show that, given some weak
assumptions on the hypothesis class F, a loss being FCC is a
necessary condition if the loss is also to be F-consistent.

We say a loss ¢ is F-consistent if, for any distribution,
minimising its associated risk over F yields a classifier with
minimal 0-1 loss in 2. Recall from Section 2.2 that the risk
of a hypothesis f € F associated with a loss ¢ and distribu-
tion D over X' x Y is Lp(f) =Ep[l(y, f(x))] and the 0-1 risk
or misclassification error for f is ep(f) =Pp[h(z) # ¥
where h is some classifier deterministically derived by some
tie-breaking procedure on f. More precisely, we will say a
tie-breaker ' is a function from the power set of ) to )V that
guarantees T(Y) € Y for all non-empty Y C V. Finally, we
define hy(z) = T(argmax,yf,(z)) to be the classifier
derived from f using 7.

Given a function class F we say ¢ is F-consistent if, for
all distributions D and all tie-breakers 7' defining the
classifiers hy,

Lo(f") = inf Lo(f) = ep(hy) = inf ep(hy).  (10)

2. While this is simpler and stronger than the usual asymptotic nota-
tion of consistency [12] it most readily relates to FCC and sulffices for
our discussion since we are only establishing that FCC is a necessary
condition.
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We need a relatively weak condition on function classes
F to state our theorem. We say a class F is regular if the fol-
low two properties hold: 1) For any g € RY there exists an
z € X and an f € F so that f(z) = ¢g; and 2) For any =z € X
and y € YV there exists an f € F so that there is a unique
y € Y which maximises f,(z).

Intuitively, the first condition says that for any distribu-
tion over labels there must be a function in the class which
models it perfectly on some point in the input space. The
second condition requires that any mode can be modelled
on any input by a function that has no ties for its maximum
value. Importantly, these properties are fairly weak in that
they do not say anything about the constraints a function
class might put on relationships between distributions mod-
elled on different inputs.

Theorem 2. For regular function classes F any loss that is
F-consistent is necessarily also Fisher Consistent for
Classification.

Proof. The proof is by contradiction. We assume we have a
regular function class 7 and a loss ¢ which is F-consistent
but not FCC. That is, (10) holds for ¢ but there exists a dis-
tribution p over Y such that there is a g € RY which mini-
mises the conditional risk L,(g) but g is not aligned with
p (e, argmax,cy g, ¢ argmax,cy p,).

By the assumption of the regularity of F, property
1 means there is an z€ X and a f€F so that
f(z) = g. We now define a distribution D over X x )
that puts all its mass on the set {z} x ) so that
D(z,y) = p,. Since this distribution is concentrated on
a single z its full risk and conditional risk on x are
the same. That is, Lp(-) = L,(+). Thus,

Lo(f) = L(f) = inf L(f) = int Lo(f).

By the assumption of F-consistency, since f is a mini-
miser of Lp the classifier h; must also minimise ep for
any choice of tie-breaker 7" used to define h;. Because
g = f(z), the construction of D implies that ep(hs) =
ep(hg) = Pyoy|y # hy(x)] =1 —p,, where y, = hy(z) is
the label predicted by h,. However, since g is not aligned
with p by assumption and (10) holds for any 7', we are
free to choose the tie-breaker 7' defining h, so that
hy(z) = T'(argmax, g, (v)) ¢ argmax, p,. Thus

ep(hf) = ey(hy) =1 —=py, > 1—py, (11)
since y, # y. € argmax, p,.

By the second regularity property, there must also be
an f € F such that y* is the unique maximiser of fy(a:) for
y € V. Since y* is a unique maximiser, any choice of tie-
breaker T will result in a classifier satisfying h;(z) = y*
as any T must guarantee T({y}) € {y} for all y e ).
Therefore, we arrive at the contradiction

1 — Py = 6D(hf) > ED(hf) > 1 — Dy,

since hy is a minimiser of ep and ep(hf) > 1 —p, by
(11). Thus, we have shown that there exists a distribution
D so f € F is a minimiser of the risk Lp but h; is not a
minimiser of the misclassification rate ep, contradicting

JANUARY 2015

the assumption of the F-consistency of £. Therefore, ¢
must be FCC. o

The above analysis of the hybrid loss suggests it
should outperform the hinge loss due to its improved
consistency on distributions with non-dominant labels.
Furthermore, it should also make more efficient use of
data than log loss on distributions with dominant labels.
These hypotheses are confirmed in the next section by
applying the hybrid, log and hinge losses to a number of
synthetic multiclass data sets in which the data set size
and proportion of examples with non-dominant labels are
carefully controlled.

We also compare the hybrid loss with the log and hinge
losses on several real structured estimation problems and
observe that the hybrid loss regularly outperforms the other
losses and consistently performs at least as well as either of
the other losses on any problem.

4 MULTICLASS CLASSIFICATION

Two types of multiclass simulations were performed. The
first examined the performances of the hybrid, log and
hinge losses when no observation had a dominant label.
That is all observations were drawn from a D with
D,(x) < 1/2 for all labels y. The second experiment consid-
ered distributions with a controlled mixture of observations
with dominant and non-dominant labels.

4.1 Non-Dominant Distributions

To make the experiment as simple as possible, we consid-
ered an observation space of size |X| =1 and focused on
varying the number of labels and their probabilities.

Fisher consistency analyses the behaviour of losses while
observing the entire data population. To mimic seeing the
entire data population and the dominant/non-dominant
class case, we use a constant vector in R? as features, and
learn the parameter vectors w, € R? for y € V. The labels y
take different values proportionally as follows: The label set
Y took the sizes |V| =3,4,5,...,10". One label y* € Y is
assigned probability D, (z) = 0.46 and the remainder are
given an equal portion of 0.54 (e.g., in the 3 class case the
other labels each have probability 0.27, and in the 10 class
case, 0.06). Note that this means for all the label set sizes,
the gap D,(xz) — D,(z) is at least 0.19 which is always
greater than (1 — «)(1 — 2D,+(x)) = 0.04 so the hybrid con-
sistency condition (5) is always met. This way, the size of
training data does not affect the training error as long as the
proportions of y values are not altered. In the same vein, the
proportions of y values in the test data are the same as that
in the training data, thus test errors and training errors
should be the same in this case. Thus we plot the resulting
training errors (and the test errors) for hinge, log and hybrid
losses in Fig. 1 as a function of the number of labels. As we
can clearly see, the hinge loss error increases as the number
of classes increases, whereas the errors for the log and the
hybrid losses remain a constant (1 — D,+(z)), in concordance
with the consistency analysis.

Models were found using LBFGS [3] with inexact line
search, thus landing on the hinge point almost never
happens. In theory, it is a problem—it may not converge
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Fig. 1. Training Error with various number of classes. « = 0.5 for the
hybrid loss. Fisher consistency analyses the behaviour of a loss
observing the entire data population. Thus the training data are the
entire data, so are the testing data. Consequently, the training error
is the testing error.

for the non-smooth optimisation problem. But in prac-
tice, it works well.

4.2 Mix of Non-Dominant and Dominant
Distributions

The second synthetic experiment examined how the three

losses performed given various training set sizes (denoted

by m) and various proportions of instances with non-dominant

distributions (denoted by p).

We generated 60 different data sets, all with )V =
{1,2,3,4,5}, in the following manner: Instances came from
either a non-dominant class distribution or a dominant class
distribution. In the non-dominant class case, z € R'% is set
to a predefined, constant, non-zero vector and its label dis-
tribution is D;(z) = 0.4 and D,(z) = 0.15 for y > 1. In the
dominant case, each dimension z; was drawn from a nor-
mal distribution N(u =1+ y,0 =0.6) depending on the
class y =1,...,5. The proportion p ranged over 10 values
0=0.1,0.2,0.3,...,1 and for each p, test and validation sets
of size 1,000 were generated. Training set sizes of
m = 30, 60, 100, 300, 600, 1,000 were used for each p value
for a total of 60 training sets. The optimal regularisation
parameter A and hybrid loss parameter o were selected

using the validation set for each loss on each training set.
Then models with parameters w, € R for y €Y were
found using LBFGS [3] for each of the three losses on each
of the 60 training sets and then assessed using the test set.

The results are summarised in Fig. 2. Each point shows
the test accuracy for a pair of losses. The predominance of
points above the diagonal lines in a) and b) show that the
hybrid loss outperforms the hinge loss and the log loss in
most of the data sets. while the log and hinge losses perform
competitively against each other.

5 STRUCTURED ESTIMATION

Unlike the general multiclass case, structured estimation
problems have a higher chance of non-dominant distri-
butions because of the very large number of labels as
well as ties or ambiguity regarding those labels. For
example, in text chunking, changing the tag of one
phrase while leaving the rest unchanged should not
drastically change the probability predictions—especially
when there are ambiguities. Due to the prevalence of
non-dominant distributions, we expect models trained
using the hinge loss to perform poorly on these prob-
lems relative to those trained with hybrid or log losses.
We emphasise that our main motivation for investigating
structured prediction problems is that, as multiclass
problems, they tend to have non-dominant distributions.

5.1 CONLL2000 Text Chunking
Our first structured estimation experiment is carried out on
the CONLL2000 text chunking task [5]. The data set has
8,936 training sentences and 2,012 test sentences with
106,978 and 23,852 phrases (a.k.a. chunks), respectively. The
task is to divide a text into syntactically correlated parts of
words such as noun phrases, verb phrases, and so on. For a
sentence with L chunks, its label consists of the tagging
sequence of all its chunks, i.e., y = (y',?,...,y"), where ¢/
is the chunking tag for chunk j. As is common in this task,
the label y is modelled as a chain-structured graphical
model to account for the dependency between adjacent
chunking tags (y/,4/"") given observation ;. Clearly, the
model has exponentially many possible labels, which sug-
gests the absence of a dominant class.

Since the true underlying distribution is unknown, we
train a CRF on the training set and then apply the trained

0.4 0.4 0.4
* * *
* *
0350 o 035 * By 035
# - “
*
03 * 03 * 03
2 * #% 2 * x X S * A
) x 1 A : * ek = *ox A
T 025 L T 025 s 0.25
*
*
* % % *
0.2 % 0.2 * 02f ** *
*
*
02 025 03 035 04 02 025 03 035 04 02 025 03 035 04
Hinge Log Log

Fig. 2. Performance of the hybrid, hinge, and log losses on non-dominant/dominant mixtures. Points denote pairs of test accuracies for models
trained on one of 60 data sets using the losses named on the axes. Score (a/b) denotes the vertical loss with a« wins and b losses (ties not counted).

(a) Hybrid v.s. Hinge (31/15)

(b) Hybrid v.s. Log (34/15)

(c) Hinge v.s. Log (30/23)
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tively in ascending order. D = 1/2 is shown as the straight black dot line. About 700 sentences out of 2,012 in the testing set and 2,000 sentences

out of 8,936 in the training set have no dominant label.

model to both testing and training data sets to obtain an esti-
mate of the conditional distributions for each instance. We
sort the sentences z; from highest to lowest estimated prob-
ability on the true chunking label y; given ;. The result is
plotted in Fig. 3, from which we observe the existence of
many non-dominant distributions—about 1/3 of the testing
sentences and about 1/4 of the training sentences.

We use the feature template from the CRF++ toolkit [9],
and the CRF code from Leon Bottou [2]. Stochastic Gradient
Descent (SGD) [2] is used for training. During training,
dynamic programming (i.e., Viterbi algorithm) for inference is
used. We split the data into three parts: training (20 percent),
testing (40 percent) and validation (40 percent). The regular-
isation parameter A and the weight o were determined
via parameter selection using the validation set. To see the
performance with different training sizes, we took part of
the training data to learn the model and gathered statistics
on the test set. The accuracy, precision, recall and F1 Score
on the test set are reported in Table 1 when using 10 and
100 percent of the training set. The hybrid loss marginally
outperforms both the hinge loss and the log loss.

5.2 BaseNP Chunking

A similar methodology to the previous experiment is
applied to the BaseNP data set [9]. It has 900 sentences in
total and the task is to automatically classify a chunking
phrase as baseNP or not.

Again SGD [2] is used for training. During training,
dynamic programming (i.e., Viterbi algorithm) for inference
is used. We split the data into three parts: training
(20 percent), testing (40 percent) and validation (40 percent).
Once again, A and « are determined via model selection on

TABLE 1
Accuracy, Precision, Recall and F1 Score
on the CONLL2000 Text Chunking Task

the validation set. We report the test accuracy, precision,
recall and F1 Score in Table 2 for training on increasing
proportions of the training set. The hybrid marginally out-
performs the other two losses on all measures.

5.3 Human Action Recognition

Here we consider recognising human actions in TV epi-
sodes, where each contains one or more persons and may
interact with each other. We evaluate our method on the
TVHI data set [14], which contains 300 short videos col-
lected from TV episodes and includes five action classes:
handshake (HS), hug (HG), high-five (HF), kiss (KS) and
others (OT). Here a person labelled the action others means
that there is no interaction between this person and any
other persons in the image. Each video contains a number
(up to seven) of people performing one of the five action
classes. The ground-truth provided with the data set
includes upper body bounding boxes, discrete body
poses, the action labels and the interaction status between
any pair of persons (i.e., a binary variable indicating
whether there is an interaction). We manually choose
2,188 images from this data set and divide these examples
into three sets without intersection: the training set (400
frames), the validating set (894 frames) and the testing set
(894 frames). Here « is determined via model selection on
the validation set. Note in [14] their task is to predict both
interactions and actions, whereas here our task is to pre-
dict actions given interaction status. More specifically,
our goal is to solve the estimation problem of finding the
actions y € Y of all subjects in an observation image
z € X, given pairwise interaction status.

TABLE 2
Accuracy, Precision, Recall and F1 Score
on the BaseNP Chunking Task for Training
on Increasing Portions of Training Set

Train Portion Loss Accuracy | Precision | Recall | F1 Score Train Portion Loss Accuracy | Precision | Recall | F1 Score
Hinge 91.14 85.31 85.52 85.41 Hinge 88.48 71.70 75.96 73.77
0.1 Log 92.05 87.04 87.01 87.02 0.1 Log 90.86 81.09 78.96 80.01
Hybrid 92.07 87.17 86.93 87.05 Hybrid 90.90 81.23 79.09 80.15
Hinge 94.61 91.23 91.37 91.30 Hinge 94.64 87.58 88.30 87.94
1 Log 95.10 92.32 91.97 92.15 1 Log 95.21 90.07 88.89 89.48
Hybrid 95.11 92.35 92.00 92.17 Hybrid 95.24 90.12 88.98 89.55
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We use PGMs to model the dependency of the actions in
the same image. Consider a graph G = (V,€) with each
node i € V representing an action variable y' and each edge
(1,7) € € reflecting the dependency of the two action varia-
bles. The edge set £ is constructed according to the anno-
tated interaction status. If there is an interaction between
two persons in the annotation, then an edge between two
corresponding nodes is added to the edge set €.

We cast this estimation problem as finding an energy
function E(z,y) such that for an observation image = € X,
we assign the actions that receive the smallest energy with
respect to E, that is

y" = argmin E(z, y; w). (12)
yeY

Here we use the energy function F with unary terms U
and pairwise terms .S as follows,

l’ s Y U) ZU l/ oy 'U) Z S(yi7yj7x;wl/)7 (13)
€y (i,5)e€
where w = [w'; w"], and
Uy z;0) = (¢ (2, y '), (14a)
Sy ") = (g2’ 2,y i )u”). (14b)

Here ¢; and ¢, are node and edge features (which we
will define later), and 2’ is the sub-image of the bounding
box on the ith subject. The model parameter w will be
learned during training.

Our feature representation is a combination of several
visual cues including multiclass SVM action classification
scores, human body poses and the relative position between
two individuals, which have been exploited to distinguish
different actions in [13], [14]. Here we combine these visual
cues in a similar way as [14]. To be specific, let
ei(y') € {0,1}° represent an unit vector with the y'th d1men—
sion equals 1 (0 elsewhere). Similarly, let ey (1) € {0, 1}6
denote another unit vector with the r“th dimension equals
1 (0 elsewhere). Here r/ denotes the relative position of per-
son j to i. To compute 7/, we employ a simple method in
[14] which only requires the bounding boxes of person ¢
and j. Each r/ value represents a relative position in the set
{overlap, adjacent — left, adjacent — right, near — le ft, near
—right, far}. Let ® denote the Kronecker product. The fea-
tures are defined as

¢1('T:i7 y7) = di ® el(yi)7

¢z, 2,y ) = ei(y) @ e1(y’) @ ex(r’) @ o' @ o
te(y)ve(y)e()vd oo,
(15b)
where d’ € R® is a score vector contains the action clas-

sification scores obtained by applying a multiclass SVM
classifier to the histograms of gradients (HoG) descriptor

[7] extracted from the bounding box area of person i.
Similarly, o’ € R® represents another score vector of the
pose classification scores (the descriptors for pose classi-
fication is the same as that used for action classification).
Here we consider five body pose classes {profile — left,
profile — right, frontal — left, frontal — right, backwards}.
To extract the HoG features, we superimpose an 8 x 8
grid on the bounding box area and accumulate HoG for
each grid cell using five orientation bins. The final
descriptor is a concatenation of the sub-descriptors of
all cells.

Intuitively, the node term U reflects the confidence of
assigning person i the action label ' observing z'. The edge
term S encodes the correlation between actions 3’ and 1/
observing z', z7.

Implementing Kronecker product naively to compute
energies could be memory and time consuming. Fortu-
nately, we see that the feature vectors in (15) are highly
sparse (especially the edge feature). Thus we only need to
multiply the non-zero components of the feature vectors
with corresponding components of the w without using
Kronecker product.

Following the work of SVMs for structured prediction
[19], the hinge loss in this case is
= B(z,y"w)],  (16)

ly(z,y,w) = [A(Y',y) + E(z,y;w)

where

yl = argmin(E(y, z:;w) — Ay, y;)). (17)

Y

Here A is a label cost function (or distance) that describes
the discrepancy of two labels. We use the popular Ham-
ming distance, which is defined as

L
AHam y7 = Z y] 7é y,] (18)

where y = (yj)f:1 and ¢ = (y’j)./
For the log loss, let E(x,y;w) =
to (3) we have

—fy(x). Thus, according

exp(—E(z, y;w))
Zy’ey eXp(_E($7 yl; U))) .

p(ylz;w) =
So the log loss is

exp(—E(z,y; w))
Dyey exp(—E(z,y; w))) 20)

éL(xv Y, ’U)) = _10g<

= E(z,y;w) +log | D exp(~E(z,y/;w)) (21)
yey
According to (4) the hybrid loss is
ga(xa:% w) :aéL(xa:% w)+ (1 _O‘)EH(%ZJ: UJ) (22)
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Fig. 4. Confusion matrices on the TVHI data set. For each class the best are highlighted by green rectangles. The hybrid loss achieves the best clas-
sification accuracy on three out of five action classes, i.e., other, hug and kiss.

The sub-gradient of the hybrid loss is simply a convex
combination of the sub-gradient of the hinge loss and the
gradient of the log loss. It is known that the sub-gradient of
the hinge loss can be computed via standard MAP inference
techniques, and the gradient of the log loss can be computed
via standard marginal inference techniques. We use the
max-product algorithm for the hinge loss and the sum-
product algorithm for the log loss.

To accelerate the training, we apply the stochastic sub-
gradient method from [17] to the hybrid loss. Here the maxi-
mum number of iterations is set to be 30 and the min-batch
size is set to be 10. Once the parameters are learned, we use
the standard max-product algorithm to make prediction on
testing data.

In order to evaluate the recognition performance of dif-
ferent losses, we show the confusion matrices in Fig. 4. It
can be seen that the hybrid loss achieves the best true posi-
tive rates on three classes (OT, HG and KS) out of five action
classes, while the log loss and the hinge loss perform best on
the HS class and the HF class respectively. Note all losses
perform much worse on the HF class than the rest classes.
This is because the training set is highly biased as the num-
ber of persons performing the high-five action in the training
set is much less than other classes.

We also give some recognition examples as that shown in
Fig. 5. The first column shows four input images, each con-
taining multiple persons with occlusions making the recog-
nition task difficult. As we can see, hinge loss performs
worst with 10 persons out of 18 mislabelled. The log loss
outperforms the hinge loss in general as five persons are
misclassified. For the hybrid loss, persons in all images are
perfectly classified except for the third image, where all
three persons are misclassified.

6 CONCLUSION AND DISCUSSION

We have provided theoretical and empirical motivation
for the use of a novel hybrid loss for multiclass and struc-
tured prediction problems which can be used in place of
the more common log loss or multiclass hinge loss. This
new loss attempts to blend the strength of purely dis-
criminative approaches to classification, such as Support
Vector machines, with probabilistic approaches, such as

Conditional Random Fields. Theoretically, the hybrid loss
enjoys better consistency guarantees than the hinge loss
while experimentally we have seen that the addition of a
purely discriminative component can improve accuracy
when data is less prevalent.

In general the consistency condition may not hold if « is
selected by cross-validation. For example, when the selected
« is very small. However, we observe the selected o values
in our experiments are always very close to 1.

6.1 Future Work

Theoretically, we expect that some stronger sufficient
conditions on o are possible since the bounds used to
establish Theorem 1 are not tight. Our conjecture is that
a necessary and sufficient condition would include a
dependency on the number of classes. We are also inves-
tigating connections between o and the multiclass Tsyba-
kov noise condition [4].

To our knowledge, the notion of a regular function class
for the purposes of consistency analysis is novel. Character-
isations of this property for existing parametric models
would make testing for regularity easier.

In structured prediction, there is still a big gap between
the analysis and the practice. For example, in structured
prediction, we know the parametric hinge loss is not consis-
tent for binary label cost function, but we don’t know
whether the parametric hybrid loss is. Moreover, we don’t
have theoretical results for general label cost functions. To
better connect our theory with actual practice on structured
prediction problems, we plan to investigate consistency for
general cost functions (e.g., Hamming loss) that are more
commonly used in these problems.
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