Pattern Recognition 45 (2012) 563-569

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Fast matching of large point sets under occlusions

Julian J. McAuley *>*, Tibério S. Caetano*®

a Statistical Machine Learning Group, NICTA, Australia

b Research School of Computer Science, Australian National University, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received 24 January 2011
Received in revised form

1 May 2011

Accepted 14 May 2011
Available online 26 May 2011

Keywords:
Point-pattern matching

The problem of isometric point-pattern matching can be modeled as inference in small tree-width
graphical models whose embeddings in the plane are said to be ‘globally rigid’. Although such graphical
models lead to efficient and exact solutions, they cannot generally handle occlusions, as even a single
missing point may ‘break’ the rigidity of the graph in question. In addition, such models can efficiently
handle point sets of only moderate size. In this paper, we propose a new graphical model that is not
only adapted to handle occlusions but is much faster than previous approaches for solving the isometric
point-pattern matching problem. We can match point-patterns with thousands of points in a few
seconds.

Graphical models
Global rigidity

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Identifying a correspondence between two sets of point
features is a fundamental problem in pattern recognition, with
many applications in computer vision, including object detection
[1], image categorization [2], scene reconstruction [3], fingerprint
recognition [4], and shape matching [5]. There are also several
applications in other fields, such as molecular biology [6,7],
computational chemistry [8,9], and astronomy [10].

A common setting of this problem is that of isometric point-
pattern matching, where we assume that a ‘copy’ of a graph G
(the ‘template’) appears isometrically transformed within &G
(the ‘target’). Although such a formulation allows for outliers in
the target graph, it does not allow for outliers in the template graph,
i.e., points that appear in G but not in G'. In some scenarios, this is a
realistic assumption, for instance if the user has manually specified a
set of interest points in a template image. However, in many cases
we are interested in identifying the largest common isometric
subgraph between the two point sets, for instance where automatic
interest point detectors have been used for a pair of images.

Amongst approaches concerned with isometric matching, there
are further subtle differences in the formulations used. Fast
algorithms exist for the case of exact isometric matching (i.e., no
noise) [11,12], but achieving an optimal solution for even a small
known amount of noise becomes a computationally difficult (albeit
polynomial) problem [13]. Others seek solutions that are fast under
certain conditions but may be slow or inaccurate in other cases
(e.g. graphs such as grids) [4,14]. Here, we shall follow the line of
work of [15], and later [16,17], which is concerned with algorithms

* Corresponding author at: Research School of Computer Science, Australian
National University, Australia.
E-mail address: julian.mcauley@gmail.com (].J. McAuley).

0031-3203/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2011.05.008

that are provably optimal and efficient in the noise-free case, but
which give empirically good performance in the case of noise.

Along these lines, we aim to make two contributions: firstly we
specify a graphical model that allows us to solve the point-pattern
matching problem more efficiently than the existing state-of-the-
art. This is done by adapting previous results from [17] to use a
different graph topology, which allows us to use efficient search
algorithms. In practice, doing so reduces the running time from
0(GIg)?) in [17] to 0O(GIG|log|G'|). Furthermore, memory
requirements are reduced from O(/GIG *) to O(|¢'|log|G']), which
in practice allows the algorithm to be run on much larger point-
patterns (e.g. thousands rather than dozens of points).

Our second contribution is to demonstrate that this model can
easily be adapted to handle occlusions, simply by running it
multiple times under different configurations. The increase in
running time depends on the number of occlusions Ny that we
wish to handle. For Ny < [|G|/2], we achieve a running time of
O(Nocc|GIIG')*log|G']), with no increase in memory requirements.
We can handle any number of occlusions in 0(|G]3|G'|*log|G|)
time; in practice, this allows us to find the largest common
isometric subgraph in graphs with several hundred nodes, requir-
ing only a few seconds on a standard desktop machine.

2. Background
2.1. Point-pattern matching

The problem of point-pattern matching consists of finding an
instance of a ‘template’ graph G within a ‘target’ scene ¢.! In this

1 Strictly, we consider embeddings of graphs in the plane, i.e., the nodes of G
and G encode 2-D coordinates. Similarly, by ‘globally rigid graph’ we mean a

www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.05.008
mailto:julian.mcauley@gmail.com
dx.doi.org/10.1016/j.patcog.2011.05.008

564 JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569

paper, we shall assume that this instance corresponds to an
isometric transformation, meaning that ¢ can be formed by
isometrically transforming G, and possibly adding outlying points
(and possibly applying some noise to the point coordinates).?
More formally, we wish to find a total function f : G— G such that
the distances between points in G are preserved by their image in
G under f That is, we wish to find

f=argmin Y |d(g.g)-d(f(g).f(g)

f:6-6 (ijeg

. M

where d(-,-) is simply an Euclidean distance function. While this
would appear to be an instance of a quadratic assignment problem,
which is NP-hard in general [18], it has been shown in [15,16]
that this problem can be solved in polynomial time by means of a
globally rigid graphical model. In [16], a graphical model is
presented which allows exact inference to be performed in
0(IGIG'1?) memory and time; we will present this model and
improve upon it in Section 3.

2.2. Largest common subgraph

The above problem can be adapted to allow for outliers in G
and G, by allowing the function f to be a partial function. Of course,
in the case of non-zero noise, the minimizing assignment of
(Eq. (1)) then becomes the null-match (i.e, no points are
mapped), so we must add some penalty x for each point which
is occluded in G:

f=argmin Y |dg.g)—d(@)fg)l+K (G-
f6~¢ (ij)eg number of unmapped points

@)

Assuming that x is equal to the maximum amount of noise we are
likely to observe (so that points perturbed by noise always incur a
cost less than x), and that we always favor mappings over non-
mappings in the case of equal costs, this encodes the problem of
identifying the largest common isometric subgraph between G
and G'. To our knowledge, this problem has not previously been
approached using globally rigid graphical models, since the
absence of a single node will generally ‘break’ the rigidity of the
graph in question.

2.3. Matching with globally rigid graphs

A graph G is said to be globally rigid if the pattern of distances
for edges in G uniquely determine the distances in the graph
complement G. In simpler terms, the only transformations that
can be applied to the node coordinates while preserving the
distances in G are isometries.

Several papers have proposed to solve the matching problem
in (Eq. (1)) by using graphical models whose embedding in the
plane is ‘globally rigid’ [15-17]. In these formulations, the nodes
of the graphical model correspond to points in G, while their
assignments are points in G'. If the globally rigid graph in question
forms a junction-tree with small maximal clique size then
min-sum belief propagation [19] results in an exact and efficient
solution to the matching problem.

(footnote continued)

graph with a globally rigid embedding. Note that rather than using the common
notation G = (V,£), we consider G to be a set of points for simplicity, and say (i,j) e G
when we want to refer to edges.

2 Additional points in ¢’ are referred to as ‘outliers’, while additional points in
G are ‘occlusions’.

Essentially, if we have a rigid graph R (which includes the
same nodes as G, but only a subset of its edges), it is not necessary
to solve the problem described in (Eq. (1)), but only

f=argmin Y |d(g.g)—-d((@).f(g))]. (€

fiG-¢g (ij)eR

(similarly for (Eq. (2)) in the case of occlusions). Preserving the
lengths of the edges in R implies that the lengths of all edges
(i,j)e G are preserved, due to the global rigidity result (see
Theorem 1 from [15]).

Research in this direction has consisted of producing globally
rigid graphs with smaller maximal clique sizes. Ref. [15] proposed
using a ‘3-tree’ model, which had maximal cliques of size 4,
allowing inference to be run in O(|GlIG'|*) time and space. Ref. [16]
reduced this to O(|GII¢'|) using an iterative algorithm based on
loopy belief propagation. It was shown in [17] that this could be
achieved in a single iteration, resulting in a faster algorithm in
practice. Examples of such models are shown in Fig. 1.

3. Our model

We start from the model described in [17]. There, the authors
start with a graph that is rigid to translations and rotations (but
not reflections). To handle isometric transformations, a third-
order term is added to (Eq. (1)) which either enforces or bans
reflections:

fi= argmin Y |d(g.g)-d(fE).f(g)

fig-G re(l,-lijer

g2 @—gi1)' f@)—fEir)"
d d . 4
+ 2 T “[(gf—g,-u)f 4 fe—f@o | @

r 1 ‘selects” whether the determinants should agree or disagree in sign

If the points (g;,g;,1,8i,2) are reflected, it will change the sign of
the determinant above; thus the second term in (Eq. (4)) ensures
that the points have a consistent orientation. Either they should
all be reflected in the target (r=1), or none of them should be
(r=-1).

We improve this model by making a simple modification to the
topology found in [17]. Whereas the graph from [17] forms a chain,
it allows for more efficient inference if this model is replaced by a
2-tree, such as the one from Fig. 1 (bottom right). We shall say that
the variables g; and g, form the ‘root’ of the 2-tree. Although this
graphical model still has maximal cliques of size 3, meaning that
min-sum belief propagation would take O(|GIG'|?) time, we can
achieve faster results by conditioning upon g;, g, and r. By
conditioning on these three variables, the expected locations of
the remaining points are known; we can search for points close to
these locations in logarithmic time using a KD-tree [20]. Thus
we have 0(|¢'|%) different points to condition on, O(|G|) points
to search for, and an O(log|G'|) search algorithm; this results in a
final running time of O(|GIIG'|*log|G'|). The algorithm requires
0(|/G'|log|d'|) space, as required by the KD-tree [20].

The KD-tree also allows us to search for K-nearest-neighbors.
While this is not necessary in the exact case, it may prove
beneficial under noise. For fixed K the asymptotic running time
remains the same.?

Pseudocode for our method is shown in Algorithm 1. Although
this algorithm will not necessarily produce the same solution as
running the O(/GIG'|?) min-sum algorithm for point-patterns
subject to noise, it will produce the same solution if an isometric

3 A KD-tree computes nearest-neighbors amongst n points in expected-case
O(logn) for random points, though certain distributions of points may lead to
worse performance.

JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569 565

model from [17]

model from [16]

)

our model

Fig. 1. Models for rigid matching from [15-17]; the proposed model is shown at the bottom right (the nodes labeled 1 to n represent the points gy,..., gy ing; risa
boolean variable encoding whether or not the pattern is reflected). The models are globally rigid when embedded in the plane.

instance exists. Also note that under this assumption any arbitrary
choice of root nodes g, and g, will lead to the same solution. Thus
we replicate precisely the theoretical results reported in [15]; in
the case of noise, we will show in Section 4 that the two
algorithms perform comparably. Also, note that due to the
breakstatement on Line 10, the algorithm will be much faster if
a ‘good’ solution is found early on. Thus if bestcost is initialized
using a reasonable search heuristic, we may observe running
times closer to O(|G'|?).

Algorithm 1. Find the function f resulting in the best match.

Input: two graphs G and ¢’ (|G| < |G'|), and root nodes g; and g»
Output: a function f : G- ¢

1. Initialize: best = ¢, bestcost = oo

2. for each possible mapping (f(g1).f(g2)) e G x G do

3. for re{1,—1} = {reflected,not reflected} do

4 cost = |1g1—g21—f(g1)—f(g2)!l

5. for each node g; € G\{g1,82}do

6. Find the expected position p of f(g;), given f(g1), f(g2),
and r

7. Search for p’s nearest-neighbor n, using a KD-tree

8. cost = cost+ g1 —&il—f (g1)—np |
+11g2—gil—If(g2)—np

9. if cost > bestcost then

10. break

11. end if

12. end for

13. if cost < bestcost then

14. best =f

15. bestcost = cost

16. end if

17. end for

18. end for

19. Return: bestcost,best

3.1. Handling occlusions

At this stage, our model does not handle occlusions (i.e.,
outliers in the template pattern). However, the proposed 2-tree

model does have the advantage that removing any nodes other
than g; or g (the ‘root’) will not ‘break’ the global rigidity of the
model. Thus if we bound the distance in Algorithm 1, Line 8 by x
(the occlusion cost), this algorithm will solve the problem of
matching with occlusions assuming that we know two points that
are not occluded, which are used as the root of the tree.

Of course, we do not know in general any two points that are
not occluded, so we would like to avoid such a requirement.
Assuming that fewer than ||G|/2] points are occluded, doing so is
easy — we can just choose [|G|/2]+1 independent edges (i.e.,
edges with no nodes in common), and use each of them as a root -
at least one of these edges must contain a pair of non-occluded
points. By rerunning Algorithm 1 with each of these edges as the
root, the minimum cost solution amongst all reruns shall corre-
spond to the desired solution. Thus for Ny < ||G|/2], we require
O(Nocc) reruns, resulting in a running time of O(Nocc|GIG |210g|G).

It is not complicated to extend this result to Nocc > [|G|/2].
First, we note that if all edges within a maximal clique of size K
are used as the root then we can handle up to K—2 occlusions,
since the remaining two points will be used as the root during
some rerun. Now, suppose that we have C such cliques; we only
require that one of these cliques contains a pair of non-occluded
points, which is guaranteed if Ny < (K—1)C. Thus using cliques of
size K, we can handle Ny < (K—1)[|G|/K] occlusions, which
requires a total of [|g|/I<J (%) € 0(GIK) reruns. This scales until
we have |G]—2 occlusions, in which case we must consider every
edge as the root, requiring precisely |G|? reruns.

The behavior when |G|/K is not an integer is simple: to handle
at most Ny occlusions, we will need to use a combination of
cliques of size [|G|/(IG|—Noce—1)] and cliques of size
LIG1/(1G1—Nocc—1)] +1. We will need |G| mod (|G|—Nocc—1) of the
larger cliques, and (]G|—Nocc—1)—(|G| mod (|G]—Nocc—1)) of the
smaller cliques. Thus for |G| =8 and Ny =4 (for example), we
would need two cliques of size 3, and one clique of size 2.
A demonstration of the number of edges required for different
values of Ny is shown in Fig. 2.

Pseudocode for our algorithm is shown in Algorithm 2.
Remember that Ny is the number of occlusions we wish to be
able to handle; the actual number of occlusions must be no
greater than this value. Furthermore, we adapt Algorithm 1, Line
1 so that it uses the value of bestcost from Algorithm 2; this way

566

0 occlusions

1 rerun

1 occlusion

2 reruns

JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569

2 occlusions

3 reruns

o—O0

3 occlusions

4 reruns

4 occlusions

7 reruns

5 occlusions

12 reruns

A

6 occlusions

28 reruns

Fig. 2. The number of reruns required for different values of Ny for a graph with |G| = 8 nodes. Example choices of the edges to be used as the root are shown, though the

nodes may be permuted in any order.

we do not waste time searching for solutions that have larger cost
than the best solution already found.

Algorithm 2. Find the maximal common isometric subgraph.

Input: two graphs G and ¢, and Ny¢c < |G]—2
Ouput: a function f : G- ¢
. Initialize: best = ¢, bestcost = co
« Ksmai = L161/(1G1—Nocc—1) | (size of small cliques)
- Kjarge = Ksma +1 (size of large cliques)
. Nlarge =g mod (1G]1=Nocc—1)
- Nsman = (|g|_Nocc_1)_Nlarge
. for size e {large,small} do
for ce{1...Nsj} do
for (i) e ('-%!)do
0. run Algorithm 1 using the root (g ind,&j + ind)»
returning cost,f
11. if cost < bestcost then
12. best =f
13. bestcost = cost
14. end if
15. ind = ind + Kijze
16. end for
17. end for
18. end for
19. Return: bestcost,f

= O OND U A WN =

A plot of the number of reruns required for different values of
Noce is shown in Fig. 3, for |G| = 10,000. The function is bounded
below by the linear function y = N, and above by the quadratic
function y = (Vy); it is not significantly worse than linear for
reasonable values of N.

Note that at this point the problem can be ‘reversed’, i.e., we
can just as easily consider searching for G in G’ as we can consider
searching for ¢ in G. Since our asymptotic running time has
higher degree in |G| than in |G| (at least for large values of Nocc),
we shall consider G to be the smaller of the two graphs, without
loss of generality.

The notion of constructing graphs that remain globally rigid
when nodes or edges are deleted is not new, and is commonly
referred to as ‘redundant rigidity’ [21]. Such a notion is useful in
robotics applications (for example), whereby a group of robots
may maintain a rigid formation even if some are unable to
communicate. However, the goal in such applications is typically
to minimize the number of edges in the graph (i.e., the total
amount of communication), whereas we wish to minimize the
maximal clique size (so that inference is efficient). Fig. 4 (left)
shows a graph that remains rigid after a single deletion, though it
has maximal cliques of size 4. Instead, we are using a collection of
graphs, each of which has maximal cliques of size 3. To continue

N, vs. number of reruns required for IGl = 10000

108 T T T T

107
100
10°
10*

10°

number of reruns required

10
(5

= our method

1 00 1 1 1 1
0 2000 4000 6000 8000

N,

occ

10000

Fig. 3. The number of reruns required for different values of Ny, when
|G| =10,000. The linear function y=x and the quadratic function y = (Niu) bound
the function below and above, and are shown in dotted lines (note the logarithmic
scale).

A

Fig. 4. The ‘redundantly rigid’ graph (at left) has large maximal cliques, rendering
inference intractable. Our approach (at right) uses a collection of graphs (in this
case, two graphs for Nocc < 1). The graphs are shown using two different colors,
where the dotted edges are shared. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

the analogy with robotics, our approach corresponds to commu-
nication over several different channels—at least one of which
will remain rigid even if some robots are unable to communicate.

4. Experiments
4.1. Graph matching without occlusions

First, we compare the accuracy and running time of our
method to those from [15-17,22].* For these experiments, we
assume that all of the points in G have mappings in G, i.e., there
are no occlusions.

4 Note that we implemented the method of [22] in Octave, which is not
directly comparable to the other methods, which were implemented in C++.

JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569 567

CMU ‘house’ dataset, performance

L0 ¥—¥ Method from [15]
+—+ Method from [16]
0.8 | a&~A Method from [17] b
@—® Method from [22]
‘g 06 | B—8 Our method, INN)
o *—* Our method, 10NN
E 04 i
02 i
0.0 . . . B
0 20 40 60 30 100
separation between frames
CMU ‘house’ dataset, running time
102 T T T T
101 - - - - - - - - - E
100 o A A 2 A A A A 3
% 10-1
g 101 F]
3 o .
2 102 4
= ¥—¥ Method from [15]
%n 10-3 F +— Method from [16] |7
§ loa b &—A Method from [17] 1
@—@ Method from [22]
10=5 F B—8 Our method, INN (]
*=—k Our method, 10NN
10-6 . . : :
0 20 40 60 80 100

separation between frames
Fig. 5. Performance (top) and running times (bottom) on the CMU ‘house’ dataset.

Note the logarithmic scale of the timing plot. All methods obtain similar
performance, though ours is more than an order of magnitude faster.

Running time for large G’ (IGl = 10)
T T

10°
=—— Method from [15]
10* | — Method from [16] |
. = Method from [17]
> 10 42.8Mb = Method from [22]
=1 .
§ 102 F 292 7Mb —— Our method, INN]
g 40.05Mb —— Our method, IONN
2 10'r \x\ 827.0Kb ——s; 7
2 0 / ™~ 1
g 137.3Mb
=
107 F 1.257Mb]
1072 n
1073 ! .

10! 107 10° 10*
size of the target graph G’

Fig. 6. Running time on large graphs (average of 10 repetitions). Note that both
axes are shown on a logarithmic scale. Annotations show the memory footprints
for the largest graph sizes tested.

4.1.1. House dataset

Fig. 5 shows the accuracy (top) and running time (bottom) of
our method on the CMU ‘house’ dataset [23], which has been used
in many computer vision papers [16,24-26]. This dataset consists
of a series of 111 frames of a toy house, subject to increasing
rotation in 3-D. The same 30 points have been identified in each
frame so that the points in a pair of frames become G and G'. The
further apart these two frames appear in the video sequence, the
more difficult the matching problem becomes. The error mea-
surement is simply the ‘Hamming error’, i.e., the proportion of
points incorrectly matched.

Fig. 5 (top) shows how the accuracy of our method varies as the
separation between frames increases. When searching only for
nearest-neighbors (1NN), our method is worse than its competi-
tors, though when performing a 10-nearest-neighbor search
(10NN), it achieves similar performance to the other methods
(it is worse for nearby frames, but better for distant frames). The
running time is shown in Fig. 5 (bottom); here we note that even
the 10-nearest-neighbor version of our algorithm is more than an
order of magnitude faster than its nearest competitor. Although our
asymptotic bounds do not guarantee this level of improvement,
our algorithm is able to achieve such results by terminating each
search as soon as it has a higher cost than the best solution already
found (see Algorithm 1, Line 10). By similar reasoning, the
10-nearest-neighbor version need not be significantly slower than
the nearest-neighbor version, as it may find a low-cost solution
earlier on. Consequently, the running time is not uniform across all
baselines; it appears to become slightly slower when subject to
high noise. Naturally, increasing the number of nearest-neighbors
leads to better performance at the cost of increased running time,
so in practice the number of nearest-neighbors should be tuned
according to the running time allowance.

4.1.2. Exact matching in large graphs

Here we take a small graph ¢ with |G| =10. Points in G are
generated by uniform sampling, and randomly transformed to
form &'. Outliers are added to G, whose size is increased until
each method takes over 5 s to perform a single match. There is no
jitter in the point coordinates, meaning that each method reported
obtains the same (correct) solution; thus only the running time
varies. Fig. 6 shows the running time of each method as |G|
increases. Our method is able to run on graphs with ~ 10,000
nodes in the same time as others are able to run on only ~ 100.
Our method exhibits a high variance in running time, which is
again due to how quickly a ‘good’ solution is obtained.

Importantly, the other methods could not be run on larger graphs
due to their memory footprints. The method from [15] has a memory
footprint of O(|GlIG'|*) meaning that it requires several 100 MB even
for |G'|=50. Alternately, with memory requirements of only
0(|G'|log|G'|), our method can in principle allow for graphs of several
million nodes. Fig. 6 has been annotated to show the memory
requirements of each method, for the largest graph on which it was
run; the memory footprint of the proposed method is significantly
smaller than its competitors, even for much larger graphs.

4.2. Graph matching with occlusions

In this experiment, we create a graph G by uniform sampling in
the square [0,1000)?, with |G| = 50. The graph is randomly trans-
formed to form &', though Ny points are randomly replaced (again
by uniform sampling). Random jitter from [—5,5)? is applied to all
of the point coordinates. Here we set the occlusion cost x to match
the maximum amount of jitter, i.e.,, x =10. In practice k would
require manual tuning if the amount of noise is unknown.

568

Increasing occlusions and 1%jitter,
IG1=1G"1 =25

Method from
Method from
Method from
Method from [22
Our method, INN

Our method, IONN

15
16
1.5 K 17

1
1
1
1

1.0

Hamming error (on unoccluded
points only)

JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569

Increasing occlusions and 1%yjitter,
IGl=1G’1 =25

= Method from [22]
E L2 1 — our method, INN 1
= e Our method, 10NN
O] 1.0
o
S ~
§Z08
5 o
£z 006
o
oh &
g 0.4
-
.2
= 0.
0.0 E —
0 5 10 15 20
N,

oce

Increasing occlusions and 1%jitter, IGl = 1G°| = 25

101F 3
=
Lol gt
=}
2
g
Sn 10-1 == Method from [15]
A=) === Method from [16]
g === Method from [17]
= 10-2¢ === Method from [22] E
== Our method, INN
== Qur method, IONN
10-3 : : - .
0 5 10 15 20

N,

occ

Fig. 7. Performance (top) and running times (bottom) as Ny varies. Ten repetitions were performed, with error bars indicating standard error. The top left plot shows the
error amongst only the unoccluded points, while the top right plot shows the error amongst only the occluded points (i.e., whether they were correctly identified as
occlusions); only our method and that of [22] are shown in the top right plot, as the others are unable to identify occlusions.

Fig. 7 (top left) shows how each method performs on these
graphs, for 0 < Ny < |G]—3 (beyond which the ‘correct’ match is
not unique). Naturally, only our method and that of [22] are able
to detect occlusions, whereas the other methods generate arbi-
trary (incorrect) assignments for the occluded points. To allow for
a meaningful comparison, we only measure how many of the
unoccluded points are correctly matched by each method.
Although the other models produce reasonable results for up to
about Noc ~ 10, this graph clearly demonstrates that the other
models are invalid for large numbers of occlusions (in fact, they
are no better than random). Alternately, the performance of our
method does not degrade as Ny increases, until about Ny ~ 40;
however, with so few unoccluded points, there may be spurious
low-cost solutions, meaning that this result is to be expected.

The error on the remaining points (i.e., the proportion of
occluded points incorrectly identified as not being occluded) is
shown in Fig. 7 (top right). Although the method of [22] is in
principle able to handle occlusions using our energy function, it
quickly becomes inaccurate as the number of occlusions increases;
the problem appears to be that the method of [22] requires
(Eq. (2)) to be expressed as an ‘argmax’ problem with positive
potentials, meaning that when the potentials are rescaled to be
positive, the ‘important’ part of the potential (i.e., the part encoding
Euclidean distances) is concentrated within a small range of values,
and is subsequently ignored by the approximation.

Fig. 7 (bottom) shows the running time of each method.
Naturally, for those models that do not encode occlusions, the
running time is uniform as N, varies. Our method is faster up to
about Ny ~ |G|/2. However, at this point, the results obtained by

the other methods are no better than random, as mentioned
above. The running time of our method seems to closely follow
the asymptotic prediction made in Fig. 3, though it is slightly
better in the case of large graphs due to the optimizations
discussed in Section 4.1.1.

It is only after about Ny ~ 40 that our algorithm is slower by a
significant margin. However, as our method is the only one that is
able to perform matching under these conditions, this is a
promising result.

5. Conclusion

We have presented an algorithm for isometric graph matching
that is significantly faster than its nearest competitors, while main-
taining similar results in the case of noise. The asymptotic improve-
ments in running time and memory requirements allow our
algorithm to be run on graphs which are orders of magnitude larger
than those allowed by previous methods. Furthermore, a simple
modification to our model allows it to handle isometric matching
with occlusions, meaning that we are able to solve what could be
called the maximal common isometric subgraph problem, which has
thus far not been possible for similar models based on global rigidity.

Acknowledgement

NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the

JJ. McAuley, T.S. Caetano / Pattern Recognition 45 (2012) 563-569 569

Digital Economy and the Australian Research Council through the
ICT Centre of Excellence program.

References

[1] P.F. Felzenszwalb, Representation and detection of deformable shapes, IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (2) (2005)
208-220.

[2] S. Belongie,]. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24 (4) (2002) 509-522.

[3] RI. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2004.

[4] P. van Wamelen, Z. Li, S. Iyengar, A fast expected time algorithm for the 2-D
point pattern matching problem, Pattern Recognition 37 (8) (2004)
1699-1711.

[5] H. Chui, A. Rangarajan, A new algorithm for non-rigid point matching, in:
CVPR, 2000, pp. 44-51.

[6] T. Akutsu, K. Kanaya, A. Ohyama, A. Fujiyama, Point matching under non-
uniform distortions, Discrete Applied Mathematics 127 (1) (2003) 5-21.

[7] R. Nussinov, H.J. Wolfson, Efficient detection of three-dimensional structural
motifs in biological macromolecules by computer vision techniques, Proceed-
ings of the National Academy of Sciences 88 (1991) 10495-10499.

[8] Y. Martin, M. Bures, E. Danaher, J. DeLazzer, I. Lico, A fast new approach to
pharmacophore mapping and its application to dopaminergic and bezodiaze-
pine agonists, Journal of Computer-Aided Molecular Design 7 (1993) 83-102.

[9] P.W. Finn, L.E. Lavraki,]J.-C. Latombe, R. Motwani, C. Shelton, S. Venkatasu-
bramanian, A. Yao, RAPID: Randomized pharmacophore indentification for
drug design, in: Symposium on Computational Geometry.

[10] F. Murtagh, A new approach to point-pattern matching, Astronomical Society
of the Pacific 104 (674) (1992) 301-307.

[11] H. Alt, LJ. Guibas, Discrete geometric shapes: matching, interpolation, and
approximation: a survey, Technical Report, Handbook of Computational
Geometry, 1996.

[12] PJ. de Rezende, D.T. Lee, Point set pattern matching in d-dimensions,
Algorithmica 13 (1995) 387-404.

[13] H. Alt, K. Mehlhorn, H. Wagener, E. Welzl, Congruence, similarity and
symmetries of geometric objects, Discrete Computational Geometry 3 (3)
(1998) 237-256.

[14] M.T. Goodrich, J.S.B. Mitchell, Approximate geometric pattern matching
under rigid motions, IEEE Transactions on Pattern Analysis and Machine
Intelligence 21 (4) (1999) 371-379.

[15] T.S. Caetano, T. Caelli, D. Schuurmans, D.A.C. Barone, Graphical models and
point pattern matching, IEEE Transactions on Pattern Analysis and Machine
Intelligence 28 (10) (2006) 1646-1663.

[16] J.J. McAuley, T.S. Caetano, M.S. Barbosa, Graph rigidity, cyclic belief propaga-
tion and point pattern matching, IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (11) (2008) 2047-2054.

[17] T.S. Caetano, J.J. McAuley, Faster graphical models for point-pattern match-
ing, Spatial Vision 22 (5) (2009) 443-453.

[18] K. Anstreicher, Recent advances in the solution of quadratic assignment
problems, Mathematical Programming 97 (2003) 27-42.

[19] S.M. Aji, R]. McEliece, The generalized distributive law, IEEE Transactions on
Information Theory 46 (2) (2000) 325-343.

[20] J.L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM 18 (9) (1975) 509-517.

[21] T. Jordan, Z. Szabadka, Operations preserving the global rigidity of graphs
and frameworks in the plane, Computational Geometry 42 (6-7) (2009)
511-521.

[22] M. Leordeanu, M. Hebert, A spectral technique for correspondence problems
using pairwise constraints, ICCV, vol. 2, 2005, pp. 1482-1489.

[23] CMU ‘house’ dataset. [link]. URL <http://vasc.ri.cmu.edu/idb/html/motion/
house/>.

[24] J. Yarkony, C. Fowlkes, A. Ihler, Covering trees and lower-bounds on quadratic
assignment, in: CVPR, 2010, pp. 887-894.

[25] O. Duchenne, F. Bach, I. Kweon,]. Ponce, A tensor-based algorithm for high-
order graph matching, in: CVPR, 2009, pp. 1980-1987.

[26] M. Leordeanu, M. Hebert, Unsupervised learning for graph matching, in:
CVPR, 2009, pp. 864-871.

Julian J. McAuley received the BSc degree in mathematics and the BE degree in software engineering (with first-class honors and the university medal) from the University
of New South Wales in 2007. He is currently undertaking a PhD at the Australian National University, under the supervision of Tibério Caetano.

Tibério S. Caetano received the BSc degree in electrical engineering (with research in physics) and the PhD degree in computer science (with highest distinction), from the
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. The research part of the PhD program was undertaken at the Computing Science Department at the University
of Alberta, Canada. He held a postdoctoral research position at the Alberta Ingenuity Centre for Machine Learning and is currently a senior researcher with the Statistical
Machine Learning Group at NICTA. He is also an adjunct senior fellow at the Research School of Computer Science, Australian National University. His research interests

include pattern recognition, machine learning, and computer vision.

http://vasc.ri.cmu.edu/idb/html/motion/house/
http://vasc.ri.cmu.edu/idb/html/motion/house/

	Fast matching of large point sets under occlusions
	Introduction
	Background
	Point-pattern matching
	Largest common subgraph
	Matching with globally rigid graphs

	Our model
	Handling occlusions

	Experiments
	Graph matching without occlusions
	House dataset
	Exact matching in large graphs

	Graph matching with occlusions

	Conclusion
	Acknowledgement
	References

