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Abstract

In this paper we present an algorithm to learn a multi-label classifier which
attempts at directly optimising the F -score. The key novelty of our for-
mulation is that we explicitly allow for assortative (submodular) pairwise
label interactions, i.e., we can leverage the co-ocurrence of pairs of labels
in order to improve the quality of prediction. Prediction in this model
consists of minimising a particular submodular set function, what can be
accomplished exactly and efficiently via graph-cuts. Learning however is
substantially more involved and requires the solution of an intractable com-
binatorial optimisation problem. We present an approximate algorithm for
this problem and prove that it is sound in the sense that it never predicts
incorrect labels. We also present a nontrivial test of a sufficient condition
for our algorithm to have found an optimal solution. We present exper-
iments on benchmark multi-label datasets, which attest the value of the
proposed technique. We also make available source code that enables the
reproduction of our experiments.

1 Introduction

Research in multi-label classification has seen a substantial growth in recent years (e.g.,
[1, 2, 3, 4]). This is due to a number of reasons, including the increase in availability of
multi-modal datasets and the emergence of crowdsourcing, which naturally create settings
where multiple interpretations of a given input observation are possible (multiple labels for
a single instance). Also many classical problems are inherently multi-label, such as the
categorisation of documents [5], gene function prediction [6] and image tagging [7].

There are two desirable aspects in a multi-label classification system. The first is that a
prediction should ideally be good both in terms of precision and recall: we care not only
about predicting as many of the correct labels as possible, but also as few non-correct labels
as possible. One of the most popular measures for assessing performance is therefore the
F -score, which is the harmonic mean of precision and recall [8]. The second property we
wish is that, both during training and also at test time, the algorithm should ideally take
into account possible dependencies between the labels. For example, in automatic image
tagging, if labels ocean and ship have high co-occurrence frequency in the training set, the
model learned should somehow boost the chances of predicting ocean if there is strong visual
evidence for the label ship [9].

In this paper we present a method that directly addresses these two aspects. First, we
explicitly model the dependencies between pairs of labels, albeit restricting them to be
submodular (in rough terms, we model only the positive pairwise label correlations). This
enables exact and efficient prediction at test time, since finding an optimal subset of labels
reduces to the minimisation of a particular kind of submodular set function which can be
done efficiently via graph-cuts. Second, our method directly attempts at optimising a convex
surrogate of the F -score. This is because we draw on the max-margin structured prediction
framework from [10], which, as we will see, enables us to optimise a convex upper bound
on the loss induced by the F -score. The critical technical contribution of the paper is a
constraint generation algorithm for loss-augmented inference where the scoring of the pair
(input-output) is a submodular set function and the loss is derived from the F -score. This
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is what enables us to fit our model into the estimator from [10]. Our constraint generation
algorithm is only approximate since the problem is intractable. However we give theoretical
arguments supporting our empirical findings that the algorithm is not only very accurate in
practice, but in the majority of our real-world experiments it actually produces a solution
which is exactly optimal. We compare the proposed method with other benchmark methods
on publicly available multi-label datasets, and results favour our approach. We also provide
source code that enables the reproduction of all the experiments presented in this paper.
Related Work. A convex relaxation for F -measure optimisation in the multi-label setting
was proposed recently in [11]. This can be seen as a particular case of our method when there
are no explicit label dependencies. In [12] the authors propose quite general tree and DAG-
based dependencies among the labels and adapt decoding algorithms from signal processing
to the problem of finding predictions consistent with the structures learned. In [13] graphical
models are used to impose structure in the label dependencies. Both [12] and [13] are in a
sense complementary to our method since we do not enforce any particular graph topology
on the labels but instead we limit the nature of the interactions to be submodular. In [14]
the authors study the multi-label problem under the assumption that prior knowledge on
the density of label correlations is available. They also use a max-margin framework, similar
in spirit to our formulation. A quite simple and basic strategy for multi-label problems is
to treat them as multiclass classification, effectively ignoring the relationships between the
labels. One example in this class is the Binary Method [15]. The RAkEL algorithm [16] uses
instead an ensemble of classifiers, each learned on a random subset of the label set. In [17] the
authors propose a Bayesian CCA model and apply it to multi-label problems by enforcing
group sparsity regularisation in order to capture information about label co-occurrences.

2 The Model

Let x ∈ X be a vector of dimensionality D with the features of an instance (say, an image);
let y ∈ Y be a set of labels for an instance (say, tags for an image), from a fixed dictionary
of V possible labels, encoded as y ∈ {0, 1}V . For example, y = [1 1 0 0] denotes the first
and second labels of a set of four. We assume we are given a training set {(xn, yn)}Nn=1, and
our task is to estimate a map f : X→ Y that has good agreement with the training set but
also generalises well to new data. In this section we define the class of functions f that we
will consider. In the next section we define the learning algorithm, i.e., a procedure to find
a specific f in the class.

2.1 The Loss Function Derived from the F -Score

Our notion of ‘agreement’ with the training set is given by a loss function. We focus on
maximising the average over all instances of F, a score that considers both precision and
recall and can be written in our notation as

F =
1

N

N∑
n=1

2 p(yn, ȳn)r(yn, ȳn)

p(yn, ȳn) + r(yn, ȳn)
, where p(y, ȳ) =

|y � ȳ|
|ȳ| and r(y, ȳ) =

|y � ȳ|
|y|

Here ȳn denotes our prediction for input instance n, yn is the corresponding ground-truth,
� denotes the element-wise product and |u| denotes the 1-norm of vector u (in our case the
number of 1s since u will always be binary). Since our goal is to maximise the F -score a
suitable choice of loss function is ∆(y, ȳ) = 1 − F (y, ȳ), which is the one we adopt in this
paper. The loss for a single prediction is therefore

∆(y, ȳ) = 1− 2 |y � ȳ|/(|y|+ |ȳ|) (1)

2.2 Feature Maps and Parameterisation

We assume that the prediction for a given input x is a maximiser of a score that encodes
both the unary dependency between labels and instances as well as the pairwise dependencies
between labels:

ȳ ∈ argmax
y∈Y

yTAy (2)
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where A is an upper-triangular matrix scoring the pair (x, y), with diagonal elements Aii =〈
x, θ1i

〉
, where x is the input feature vector and θ1i is a parameter vector that defines how

label i weighs each feature of x. The off-diagonal elements are Aij = Cijθij , where Cij
is the normalised counts of co-occurrence of labels i and j in the training set, and θ2ij
the corresponding scalar parameter which is forced to be non-negative. This will ensure
that the off-diagonal entries of A are non-negative and therefore that problem 2 consists
of the maximisation of a supermodular function (or, equivalently, the minimisation of a
submodular function), which can be solved efficiently via graph-cuts. We also define the

complete parameter vectors θ1 := [. . . θ1i
T
. . . ]T , θ2 := [. . . θ2ij . . . ]

T and θ = [θ1
T
θ2
T

]T , as
well as the complete feature maps φ1(x, y) = vec(x ⊗ y), φ2(y) = vec(y ⊗ y) and φ(x, y) =
[φT1 (x, y) φT2 (y)]T . This way the score in expression 2 can be written as yTAy = 〈φ(x, y), θ〉.
Note that the dimensionality of θ2 is the number of non-zero elements of matrix C–in this
setting that is

(
V
2

)
, but it can be reduced by setting to zero elements of C below a specified

threshold.

3 Learning Algorithm

Optimisation Problem. Direct optimisation of the loss defined in equation 1 is a highly
intractable problem since it is a discrete quantity and our parameter space is continuous.
Here we will follow the program in [10] and instead construct a convex upper bound on the
loss function, which can then be attacked using convex optimisation tools. The purpose of
learning will be to solve the following convex optimisation problem

[θ∗, ξ∗] = argmin
θ,ξ

[
1

N

N∑
n=1

ξn +
λ

2
‖θ‖2

]
(3a)

s.t. 〈φ(xn, yn), θ〉 − 〈φ(xn, y), θ〉 ≥ ∆(y, yn)− ξn, (3b)

ξn ≥ 0,∀n, y 6= yn.

This is the margin-rescaling estimator for structured support vector machines [10].
The constraints immediately imply that the optimal solution will be such that ξ∗n ≥
∆(argmaxy 〈φ(xn, y), θ∗〉 , yn), and therefore the minimum value of the objective function
upper bounds the loss, thus motivating the formulation. Since there are exponentially many
constraints, we follow [10] in adopting a constraint generation strategy, which starts by
solving the problem with no constraints and iteratively adding the most violated constraint
for the current solution of the optimisation problem. This is guaranteed to find an ε-close
approximation of the solution of (3) after including only a polynomial (O(ε−2)) number of
constraints [10]. At each iteration we need to maximise the violation margin ξn, which from
the constraints 3b reduces to

y∗n ∈ argmax
y∈Y

[∆(y, yn) + 〈φ(xn, y), θ〉] (4)

Learning Algorithm. The learning algorithm is described in Algorithm 1 (requires as
subroutine Algorithm 2). Algorithm 1 describes a particular convex solver based on bundle
methods (BMRM [18]), which we use here. Other solvers could have been used instead.
Our contribution lies not here, but in the routine of constraint generation for Algorithm 1,
which is described in Algorithm 2.

BMRM requires the solution of constraint generation and the value of the objective function
for the slack corresponding to the constraint generated, as well as its gradient. Soon we will
discuss constraint generation. The other two ingredients we describe here. The slack at the
optimal solution is

ξ∗n = ∆(y∗n, y
n) + 〈φ(xn, y∗n), θ〉 − 〈φ(xn, yn), θ〉 (5)

thus the objective function from (3) becomes

1

N

∑
n

∆(y∗n, y
n) + 〈φ(xn, y∗n), θ〉 − 〈φ(xn, yn), θ〉+

λ

2
‖θ‖2 , (6)

whose gradient is

λθ − 1

N

∑
n

(φ(xn, yn)− φ(xn, y∗n)) (7)
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Algorithm 1 Bundle Method for Regu-
larised Risk Minimisation (BMRM)

1: Input: training set {(xn, yn)}N
n=1, λ,

Output: θ
2: Initialize i = 1, θ1 = 0, max= −∞
3: repeat
4: for n = 1 to N do
5: Compute y∗

n (y∗n
kmax

returned by Al-
gorithm 2.)

6: end for
7: Compute gradient gi (equation (7))

and objective oi (equation (6))

8: θi+1 := argminθ
λ
2 �θ�2

+
max(0, max

j≤i
�gj , θ� + oj); i ← i + 1

9: until converged (see [17])
10: return θ

Algorithm 2 Constraint Generation

1: Input: (xn, yn), θ, V , Output: y∗n
kmax

2: k = 0
3: A

[k],n
ij = �θij , cij� (for all i, j : i �= j)

4: while k ≤ V do
5: diag(A[k],n) = diag(A) − 2yn

k+�yn�2

6: y∗n
k = argmaxy yT A[k],ny (graph-cuts)

7: if |y∗n
k | > k then

8: kmax = |y∗n
k |; k = kmax

9: else if |y∗n
k | = k then

10: kmax = |y∗n
k |; k = kmax + 1

11: else
12: k = k + 1
13: end if
14: end while
15: return y∗n

kmax
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Constraint Generation. The most chal-
lenging step consists of solving the constraint
generation problem. Constraint generation
for a given training instance n consists of
solving the combinatorial optimisation prob-
lem in expression 4, which, using the loss
in equation 1, as well as the correspondence
yT Ay = �φ(x, y), θ�, can be written as

y∗n ∈ argmax
y

yT An(y)y (8)

where diag(An) = diag(A) − 2 yn

|y|+|yn| and

offdiag(An) = offdiag(A). Note that the ma-
trix An depends on y. More precisely, a sub-
set of its diagonal elements (those An

ii for
which yn(i) = 1) depends on the quantity
|y|, i.e., the number of nonzero elements in y.
This makes solving problem 8 a formidable
task. If An were independent of y, then eq. 8
could be solved exactly and efficiently via

graph-cuts, just as our prediction problem
in equation 2. A näıve strategy would be to
aim for solving problem 8 V times, one for
each value of |y|, and constraining the op-
timisation to only include elements y such
that |y| is fixed. In other words, we can par-
tition the optimisation problem into k op-
timisation problems conditioned on the sets
Yk := {y : |y| = k}:

max
y

yT A(y)y = max
k

max
y∈Yk

yT A[k],ny (9)

where A[k],n denotes the particular matrix
An that we obtain when |y| = k. However
the inner maximization above, i.e., the prob-
lem of maximising a supermodular function
(or minimising a submodular function) sub-
ject to a cardinality constraint, is itself NP-
hard [18]. We therefore do not follow this
strategy, but instead seek a polynomial-time
algorithm that in practice will give us an op-
timal solution most of the time.

Algorithm 2 describes our algorithm. In the
worst case it calls graph-cuts O(V ) times, so
the total complexity is O(V 4).1 The algo-
rithm essentially searches for the largest k
such that solving argmaxy yT A[k],ny returns
a solution with k 1s. We call the k obtained
kmax, and the corresponding solution y∗n

kmax
.

Observe the fact that, as k increases during
the execution of the algorithm, An

ii increases
for those i where yn(i) = 1. The increment
observed when k increases to k� is

�k�
k

:= A
[k�],n
ii − A

[k],n
ii = 2

k� − k

(k� + |yn|)(k + |yn|)
(10)

which is always a positive quantity. Al-
though this algorithm is not provably opti-
mal, Theorem 1 guarantees that it is sound
in the sense that it never predicts incorrect
labels. In the next section we present addi-
tional evidence supporting this algorithm, in
the form of a test that if positive guarantees
the solution obtained is optimal.

We call a solution y� a partially optimal so-
lution of argmaxy yT An(y)y if the labels it
predicts as being present are indeed present
in an optimal solution, i.e., if for those i for
which y�(i) = 1 we also have y∗n(i) = 1,
for some y∗n ∈ argmaxy yT An(y)y. Equiva-
lently, we can write y� ⊙ y∗n = y�.

1The worst-case bound of O(V 3) for graph-
cuts is very pessimistic; in practice the algorithm
is extremely efficient.

5

Expressions (6) and (7) are then used in Algorithm 1.

Constraint Generation. The most challenging step consists of solving the constraint
generation problem. Constraint generation for a given training instance n consists of solving
the combinatorial optimisation problem in expression 4, which, using the loss in equation 1,
as well as the correspondence yTAy = 〈φ(x, y), θ〉, can be written as

y∗n ∈ argmax
y

yTAn(y)y (8)

where diag(An) = diag(A) − 2 yn

|y|+|yn| and offdiag(An) = offdiag(A). Note that the matrix

An depends on y. More precisely, a subset of its diagonal elements (those Anii for which
yn(i) = 1) depends on the quantity |y|, i.e., the number of nonzero elements in y. This
makes solving problem 8 a formidable task. If An were independent of y, then eq. 8 could
be solved exactly and efficiently via graph-cuts, just as our prediction problem in equation
2. A näıve strategy would be to aim for solving problem 8 V times, one for each value of |y|,
and constraining the optimisation to only include elements y such that |y| is fixed. In other
words, we can partition the optimisation problem into k optimisation problems conditioned
on the sets Yk := {y : |y| = k}:

max
y

yTA(y)y = max
k

max
y∈Yk

yTA[k],ny (9)

where A[k],n denotes the particular matrix An that we obtain when |y| = k. However the
inner maximization above, i.e., the problem of maximising a supermodular function (or
minimising a submodular function) subject to a cardinality constraint, is itself NP-hard
[19]. We therefore do not follow this strategy, but instead seek a polynomial-time algorithm
that in practice will give us an optimal solution most of the time.

Algorithm 2 describes our algorithm. In the worst case it calls graph-cuts O(V ) times, so the
total complexity is O(V 4).1 The algorithm essentially searches for the largest k such that
solving argmaxy y

TA[k],ny returns a solution with k 1s. We call the k obtained kmax, and
the corresponding solution y∗nkmax . Observe the fact that, as k increases during the execution
of the algorithm, Anii increases for those i where yn(i) = 1. The increment observed when k
increases to k′ is

εk′
k

:= A
[k′],n
ii −A[k],n

ii = 2
k′ − k

(k′ + |yn|)(k + |yn|) (10)

which is always a positive quantity. Although this algorithm is not provably optimal, Theo-
rem 1 guarantees that it is sound in the sense that it never predicts incorrect labels. In the

1The worst-case bound of O(V 3) for graph-cuts is very pessimistic; in practice the algorithm is
extremely efficient.
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next section we present additional evidence supporting this algorithm, in the form of a test
that if positive guarantees the solution obtained is optimal.

We call a solution y′ a partially optimal solution of argmaxy y
TAn(y)y if the labels it predicts

as being present are indeed present in an optimal solution, i.e., if for those i for which
y′(i) = 1 we also have y∗n(i) = 1, for some y∗n ∈ argmaxy y

TAn(y)y. Equivalently, we can
write y′ � y∗n = y′. We have the following result

Theorem 1 Upon completion of Algorithm 2, y∗nkmax is a partially optimal solution of

argmaxy y
TAn(y)y.

The proof is in the Appendix A. The theorem means that whenever the algorithm predicts
the presence of a label, it does so correctly; however there may be labels not predicted which
are in fact present in the corresponding optimal solution.

4 Certificate of Optimality

As empirically verified in our experiments in section 5, our constraint generation algorithm
(Algorithm 2) is indeed quite accurate: most of the time the solution obtained is optimal.
In this section we present a test that if positive guarantees that an optimal solution has
been obtained (i.e., a certificate of optimality). This can be used to generate empirical lower
bounds on the probability that the algorithm returns an optimal solution (we explore this
possibility in the experimental section).

We start by formalising the situation in which the algorithm will fail. Let Z := {i :
y∗nkmax(i) = 0}, and PZ be the power set of Z (Z for ‘zeros’). Let O := {i : y∗nkmax(i) = 1} (O
for ‘ones’). Then the algorithm will fail if there exists α ∈ PZ such that∑

i,j∈α;i6=j
Anij︸ ︷︷ ︸

(a)

+
∑

i∈α,j∈O
Aij︸ ︷︷ ︸

(b)

+
∑
i∈α

A
[kmax+|α|],n
ii︸ ︷︷ ︸
(c)

+ εkmax+|α|
kmax

|yn � y∗nkmax |︸ ︷︷ ︸
(d)

> 0 (11)

The above expression describes the situation in which, starting with y∗nkmax , if we insert |α|
1s in the indices defined by index set α, we will obtain a new vector y′ which is a feasible
solution of argmaxy y

TAn(y)y and yet has strictly larger score than solution y∗nkmax . This
can be understood by looking closely into each of the sums in expression 11. Sums (a)
and (b) describe the increase in the objective function due to the inclusion of off-diagonal
terms. Both (a) and (b) are non-negative due to the submodularity assumption. Term (c)
is the sum of the diagonal terms corresponding to the newly introduced 1s of y′. Term (c)
is negative or zero, since each term in the sum is negative or zero (otherwise y∗nkmax would
have included it). Finally, term (d) is non-negative, being the total increase in the diagonal
elements of O due to the inclusion of |α| additional 1s. We can write (c) as∑

i∈α
A

[kmax+|α|],n
ii︸ ︷︷ ︸
(c)

=
∑
i∈α

A
[kmax],n
ii︸ ︷︷ ︸
(e)

+
∑
i∈α

(A
[kmax+|α|],n
ii −A[kmax],n

ii )︸ ︷︷ ︸
(f)

(12)

and the last term can be bounded as∑
i∈α

(A
[kmax+|α|],n
ii −A[kmax],n

ii ) ≤ εkmax+|α|
kmax

vα︸ ︷︷ ︸
(g)

(13)

where vα = min[|yn|−|yn�y∗nkmax |, |α|] is an upper bound on the number of indices i ∈ α such

that yn(i) = 1, and εkmax+|α|
kmax

is the increment in a diagonal element i for which yn(i) = 1
arising from increasing the cardinality of the solution from kmax to kmax+|α|. Incorporating
bound 13 into equation 12, we get that (c) ≤ (e)+(g). We can then replace (c) in inequality
11 by (e) + (g), obtaining∑

i,j∈α;i 6=j
Anij +

∑
i∈α,j∈O

Aij +
∑
i∈α

A
[kmax],n
ii︸ ︷︷ ︸

:=βA,α

+ εkmax+|α|
kmax

vα + εkmax+|α|
kmax

|yn � y∗nkmax |︸ ︷︷ ︸
:=γα

> 0 (14)
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Algorithm 3 Compute maxα βA,α

1: Input: A[kmax],n, y∗n
kmax

, V ,
2: Output: max
3: max = −∞
4: Z = {i : y∗n

kmax
(i) = 0}

5: O = {i : y∗n
kmax

(i) = 1}
6: for i ∈ Z do
7: O� = O ∪ i
8: rmax = maxy:yO�=1 yT A[kmax],ny (graph-cuts)
9: if rmax > max then

10: max = rmax
11: end if
12: end for
13: max = max − maxy yT A[kmax],ny
14: return max
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generation problem. Constraint generation for a given training instance n consists of solving
the combinatorial optimisation problem in expression 4, which, using the loss in equation 1,
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y

yT An(y)y (8)
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|y|+|yn| and offdiag(An) = offdiag(A). Note that the matrix
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ii for which
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2. A näıve strategy would be to aim for solving problem 8 V times, one for each value of |y|,
and constraining the optimisation to only include elements y such that |y| is fixed. In other
words, we can partition the optimisation problem into k optimisation problems conditioned
on the sets Yk := {y : |y| = k}:

max
y

yT A(y)y = max
k

max
y∈Yk

yT A[k],ny (9)

where A[k],n denotes the particular matrix An that we obtain when |y| = k. However the
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rem 1 guarantees that it is sound in the sense that it never predicts incorrect labels. In the
next section we present additional evidence supporting this algorithm, in the form of a test
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Table 1: Datasets. #train/#test
denotes the number of observations
used for training and testing respec-
tively; V is the number of labels and
D the dimensionality of the features;
Avg is the average number of labels
per instance.

dataset yeast enron
domain biology text
#train 1500 1123
#test 917 579

V 14 53
D 103 1001

Avg 4.23 3.37

We know that, regardless of A or α, βA,α ≤ 0 (otherwise y∗nkmax /∈ argmaxy y
TA[kmax],ny,

since βA,α is the increment in the objective function yTA[kmax],ny obtained by adding 1s in
the entries of α). The key fact coming to our aid is that γα is ‘small’, and a weak upper
bound is 2. This is because

εkmax+|α|
kmax

vα + εkmax+|α|
kmax

|yn � y∗nkmax | ≤ εkmax+|α|
kmax

|yn| ≤ εV
kmax
|yn| ≤ εV

0
|yn| =

= 2V |yn|/((V + |yn|)|yn|) ≤ 2 (15)

(Note that if |yn| = 0 then γα = 0 and our algorithm will always return an optimal solution
since βA,α ≤ 0). Now, since βA,α ≤ 0 for any A and α ∈ PZ , it suffices that we study the
quantity maxα βA,α: if maxα βA,α < −2, then βA,α < −2 for any α ∈ PZ . It is however
very hard to understand theoretically the behaviour of the random variable maxα βA,α even
for a simplistic uniform i.i.d. assumption on the entries of A. This is because the domain
of α, PZ , is itself a random quantity that depends on the particular A chosen. This makes
computing even the expected value of maxα βA,α an intractable task, let alone obtaining
concentration of measure results that could give us upper bounds on the probability of
condition 14 holding under the assumed distribution on A.

However, for a given A we can actually compute maxα βA,α efficiently. This can be done
with Algorithm 3. The algorithm effectively computes the gap between the scores of the
optimal solution y∗nkmax and the highest scoring solution if one sets to 1 at least one of the
zero entries in y∗nkmax . It does so by solving graph-cuts constraining the solution y to include
the 1s present in y∗nkmax but additionally fixing one of the zero entries of y∗nkmax to 1 (lines
7-8). This is done for every possible zero entry of y∗nkmax , and the maximum score is recorded
(lines 7-11). The gap between this and the score of the optimal solution y∗nkmax is then
returned (line 13). This will involve V − kmax calls to graph-cuts, and therefore the total
computational complexity is O(V 4). Once we compute maxα βA,α, we simply test wether
maxα βA,α + ε|V |kmax

|yn| > 0 holds (we use ε|V |kmax
|yn| rather than 2 as an upper bound for γα

because, as seen from (15), it is the tightest upper bound which still does not depend on α
and therefore can be computed). We have the following theorem (proven in Appendix A)

Theorem 2 Upon completion of Algorithm 3, if maxα βA,α + ε|V |kmax
|yn| ≤ 0, then y∗nkmax is

an optimal solution of argmaxy y
TAn(y)y.

5 Experimental Results

To evaluate our multi-label learning method we applied it to real-world datasets and com-
pared it to state-of-the art methods.

Datasets. For the sake of reproducibility we focused in publicly available datasets, and to
ensure that the label dependencies have a reasonable impact in the results we restricted the
experiments to datasets with a sufficiently large average number of labels per instance. We
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Figure 1: F -Score results on enron (left) and yeast (right), for different amounts of unary
features. The horizontal axis denotes the proportion of the features used in training.

chose therefore two multilabel datasets from mulan:2 yeast and enron. Table 1 describes
them in more detail.

Experimental setting. The datasets used have very informative unary features, so to
better visualise the contribution of the label dependencies to the model we trained using
varying amounts (1%, 10% and 100%) of the original unary features. We compared our
proposed method to RML[11] without reversion3, which is essentially our model without
the quadratic term, and to other state-of-the-art methods for which source code is publicly
available – BR [15], RAkEL[16] and MLKNN[20].

Model selection. Our model has two parameters: λ, the trade-off between data fitting
and good generalisation, and c, a scalar that multiplies C to control the trade-off between
the linear and the quadratic terms. For each experiment we selected them with 5-fold cross-
validation on the training data. We also control the sparsity of C by setting Cij to zero
for all except the top most frequent pairs – this way we can reduce the dimensionality of
θ2, avoiding an excessive number of parameters for datasets with large values of V . In our
experiments we used 50% of the pairs with yeast and 5% with enron (45 and 68 pairs,
respectively). We experimented with other settings, but the results were very similar.

RML’s only parameter, λ, was selected with 5-fold cross-validation. MLKNN’s two param-
eters k (number of neighbors) and s (strength of the uniform prior) were kept fixed to 10
and 1.0, respectively, as was done in [20]. RAkEL’s m (number of models) and t (threshold)
were set to the library’s default (respectively 2 ∗N and 0.5), and k (size of the labelset) was
set to V

2 as suggested by [4]. For BR we kept the library’s defaults.

Implementation. Our implementation is in C++, based on the source code of RML[11],
which uses the Bundle Methods for Risk Minimization (BMRM) of [18]. The max-flow
computations needed for graph-cuts are done with the library of [21]. The modifications
necessary to enforce positivity in θ2 in BMRM are described in Appendix C. Source code is
available4 under the Mozilla Public License. Details of training time for our implementation
are available in Appendix B.

Results: F-Score. In Figure 1 we plot the F -Score for varying-sized subsets of the unary
features, for both enron (left) and yeast (right). The goal is to assess the benefits of
explicitly modelling the pairwise label interactions, particularly when the unary information
is deteriorated. As can be seen in Figure 1, when all features are available our model behaves
similarly to RML. In this setting the unary features are very informative and the pairwise
interactions are not helpful. As we reduce the number of available unary features (from right
to left in the plots), the importance of the pairwise interactions increase, and our model
demonstrates improvement over RML.

2http://mulan.sourceforge.net/datasets.html
3RML deals mainly with the reverse problem of predicting instances given labels, however it can

be applied in the forward direction as well as described in [11].
4http://users.cecs.anu.edu.au/∼jpetterson/.
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Figure 2: Empirical analysis of Algorithms 2 and 3 during training with the yeast dataset.
Left: frequency with which Algorithm 2 is optimal at each iteration (blue) and frequency
with which Algorithm 3 reports an optimal solution has been found by Algorithm 2 (green).
Right: difference, at each iteration, between the objective computed using the results from
Algorithm 2 and exhaustive enumeration.

Results: Correctness. To evaluate how well our constraint generation algorithm performs
in practice we compared its results against those of exhaustive search, which is exact but
only feasible for a dataset with a small number of labels, such as yeast. We also assessed
the strength of our test proposed in Algorithm 3. In Figure 2-left we plot, for the first
100 iterations of the learning algorithm, the frequency with which Algorithm 2 returns the
exact solution (blue line) as well as the frequency with which the test given in Algorithm
3 guarantees the solution is exact (green line). We can see that overall in more than 50%
of its executions Algorithm 2 produces an optimal solution. Our test effectively offers a
lower bound which is as expected is not tight, however it is informative in the sense that
its variations reflect legitimate variations in the real quantity of interest (as can be seen by
the obvious correlation between the two curves).

For the learning algorithm, however, what we are interested in is the objective oi and the
gradient gi of line 7 of Algorithm 1, and both depend only on the compound result of N
executions of Algorithm 2 at each iteration of the learning algorithm. This is illustrated
in Figure 2-right, where we plot, for each iteration, the normalised difference between the
objective computed with results from Algorithm 2 and the one computed with the results
of an exact exhaustive search5. We can see that the difference is quite small – below 4%
after the initial iterations.

6 Conclusion
We presented a method for learning multi-label classifiers which explicitly models label de-
pendencies in a submodular fashion. As an estimator we use structured support vector
machines solved with constraint generation. Our key contribution is an algorithm for con-
straint generation which is proven to be partially optimal in the sense that all labels it
predicts are included in some optimal solution. We also describe an efficiently computable
test that if positive guarantees the solution found is optimal, and can be used to generate
empirical lower bounds on the probability of finding an optimal solution. We present empir-
ical results that corroborate the fact that the algorithm is very accurate, and we illustrate
the gains obtained in comparison to other popular algorithms, particularly a previous al-
gorithm which can be seen as the particular case of ours when there are no explicit label
interactions being modelled.
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Appendix A

Proof of Theorem 1

The proof of Theorem 1 consists of two main steps. First, we show that there must be
an optimal solution to equation 8 with at least as many 1s as the solution found by our
algorithm. This is clearly a necessary condition for Theorem 1 to hold. Next we show that,
for any possible solution found by our algorithm, there will be one such optimal solution
which will indeed agree with our solution on all its 1s. This proves the theorem. The first
step is proven in proposition 5 below, which requires supporting results that we prove first.
The theorem is then proved in the sequence.

Lemma 3 Let Y ∗k = argmaxy y
TA[k],ny, where A[k],n is such that diag(A[k],n) := diag(A)−

2yn

k+‖yn‖2 and Aij = 〈θij , Cij〉 for i 6= j, with θij ≥ 0 and Cij ≥ 0. Now let l ≥ k and define

similarly Y ∗l . Then for every y∗k ∈ Y ∗k there exists a y∗l ∈ Y ∗l such that y∗k � y∗l = y∗k (and,
conversely, for every y∗l ∈ Y ∗l there exists a y∗k ∈ Y ∗k such that y∗k � y∗l = y∗k).

Proof The claim states that for any optimal solution y∗k ∈ Y ∗k , its 1s will also be present
in some optimal solution y∗l ∈ Y ∗l . The proof is by contradiction, assuming that there
exists y∗k ∈ Y ∗k and an index i such that y∗k(i) = 1 and y∗l (i) = 0 for all y∗l ∈ Y ∗l . Now
consider the binary vector zl which agrees with y∗l everywhere except in i, i.e. zl(j) = y∗l (j)

for j 6= i and zl(i) = 1. This implies that zl
TA[l],nzl = y∗l

TA[l],ny∗l + A
[l],n
ii +

∑
j:j 6=iA

[l],n
ij .

Now note that we necessarily have
∑
j:j 6=iA

[l],n
ij + A

[l],n
ii ≥ 0. This holds because, first,∑

j:j 6=iA
[k],n
ij + A

[k],n
ii ≥ 0 (otherwise y∗k would not be optimal), second, A

[l],n
ii ≥ A

[k],n
ii and

third that A
[l],n
ij = A

[k],n
ij for i 6= j. Therefore zl

TA[l],nzl ≥ y∗l
TA[l],ny∗l , which implies that

zl ∈ Y ∗l , which contradicts the assumption that for all y∗l ∈ Y ∗l , y∗l (i) = 0. The converse is
proved analogously.

Intuitively, the above result says that due to the non-negativity of the off-diagonal elements
of A, the new objective function arisen from an increase in the diagonal of A surely has some
maximiser which includes all 1s already present in any maximiser of the previous objective
function, prior to the increase in the diagonal.

Corollary 4 Let l ≥ k. Then maxy y
TA[l],ny ≥ maxy y

TA[k],ny.

Proof Note that the set of 1s potentially present in a y∗l but not in a y∗k for which y∗l �y∗k = y∗k
necessarily has non-negative contribution to the objective function yTA[l],ny (otherwise y∗l
would not be optimal), jointly with the fact that the same is true for the set of 1s present

both in y∗l and y∗k since A
[l],n
ii ≥ A[k],n

ii for any i.

We are now ready to prove that there exists an optimal solution to the constraint generation
problem in equation 8 which contains at least kmax 1s.

Proposition 5 Let k′ ≥ kmax, where kmax is as instantiated in Algorithm 2. Then there
exists an optimal solution y∗n ∈ argmaxy y

TAn(y)y such that for some k′, we have y∗n ∈
argmaxy∈Yk′ y

TA[k′],ny.

Proof This follows from equation 9 and from the claim that for all k ≤ kmax,
maxy∈Ykmax y

TA[kmax],ny ≥ maxy∈Yk y
TA[k],ny, which we now prove. We know that

maxy y
TA[kmax],ny = maxy∈Ykmax y

TA[kmax],ny holds since, from lines 8 and 10 of Algorithm

2, we have kmax = |y∗nkmax |. On the other hand, we have maxy y
TA[k],ny ≥ maxy∈Yk y

TA[k],ny
since Yk ⊆ Y. Both facts, when put together with corollary 4, prove the claim.

We are now able to give a proof of Theorem 1.



Proof of Theorem 1 We show that for any solution y∗nkmax found by Algorithm 2, we
have that y∗nkmax � y∗n = y∗nkmax for some optimal solution y∗n having at least kmax 1s.
We proceed by contradiction, assuming that there is no optimal solution y∗n respecting
|y∗n| ≥ kmax such that y∗nkmax � y∗n = y∗nkmax holds, for any y∗nkmax . This is equivalent
to saying that for every y∗n respecting |y∗n| ≥ kmax there is an index i (which can be
different for different y∗n) such that y∗n(i) = 0 and y∗nkmax(i) = 1 for any y∗nkmax . Now
consider a vector z that agrees with y∗n everywhere except in index i, i.e., z(i) = 1. The
key observation now is that zTA[|z|],nz ≥ (y∗n)TA[|y∗n|],ny∗n, and therefore z should be
an optimal solution as well, which results in a contradiction. To see why this inequality

holds, first note that zTA[|z|],nz− (y∗n)TA[|y∗n|],ny∗n =
∑
i(A

[|z|],n
ii −A[|y∗n|],n

ii ) +
∑
j 6=iAij ,

where the first sum accounts for the potential change in the diagonal due to the increase
in the cardinality of the solution, and the second sum accounts for the newly incorporated
off-diagonal terms as a result of z(i) = 1. The result then follows from the submodularity
assumption (Aij ≥ 0,∀i 6= j) and from the fact that the diagonal is non-decreasing with

respect to increases in the cardinality of the solution (A
[|z|],n
ii − A

[|y∗n|],n
ii ≥ 0,∀i, since

|z| > |y∗n|).

Proof of Theorem 2 The theorem results directly from the fact that inequality 14
characterises the condition when the algorithm fails, as well as from the fact that
maxα βA,α ≥ βA,α and εV

kmax
|yn| ≥ γα.

Appendix B

Training time

The time the algorithm takes to train depends on the average time per iteration and on the
number of iterations.

At each iteration run time is dominated by the N calls to the constraint generation al-
gorithm, where each one may require at most V calls to the max-flow algorithm. The
computational complexity of the whole learning algorithm is therefore O(iNV 4), where i is
the number of iterations. In practice, however, it is much faster than that.

In Table 2 we summarise training times along the variables mentioned above, for the exper-
iments with all the features (rightmost bars in Figure 1). Note that our implementation is
multi-threaded, and scales almost linearly with the number of available cpus, so wall-clock
times can be much smaller.

Table 2: Training times

Dataset Training time i N V Time/call to Alg. 2
Yeast 47.8 cpu-seconds 205 1500 14 155 us
Enron 847.3 cpu-seconds 116 1123 53 6504 us

In comparison to RML[11], our method is 5.0 times slower in the Yeast dataset and 8.4 times
slower in the Enron dataset. Since it is a strict generalisation of RML, slower runtimes are
expected.
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Appendix C

Adding positivity constraint to BMRM

BMRM ([18]) approximates the solution to an optimisation problem of the form

minimize
θ

[
Remp(θ) +

λ

2
‖θ‖2

]
(16a)

where Remp(θ) =
1

N

N∑
n=1

l(xn, yn, θ) (16b)

by iteratively solving a linear program arising from a lower bound based on a first-order
Taylor approximation of l. Denoting ai+1 := ∂θRemp(θi) and bi+1 := Remp(θi)− 〈ai+1, θi〉,
where i corresponds to the iteration number, the problem that is solved is

minimize
θ.ξ

λ

2
‖θ‖2 + ξ (17a)

subject to 〈aj , θ〉+ bj ≤ ξ for all j ≤ i and ξ ≥ 0. (17b)

This is done by, at each iteration, solving the dual of eq. (17):

maximize
α

− 1

2λ
αTATAα+ αT b (18a)

s.t. 1Tα ≤ 0, α ≥ 0 (18b)

where A denotes the matrix [a1a2 . . . ai], b the vector [b1b2 . . . bi]
T and θ = − 1

λAα.

Enforcing positivity in θ2 amounts to adding the additional constraint θ2 ≥ 0 to eq. (17),
and the corresponding dual problem now becomes:

maximize
α,γ

− 1

2λ

(
αTATAα+ γT γ − 2αTAT1 γ

)
+ αT b (19a)

s.t. 1Tα ≤ 0, α ≥ 0, γ ≥ 0 (19b)

where A1 is the subset of the rows of A that correspond to the gradient w.r.t. θ2.
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