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Abstract

In this paper we show that the optimization of several ranking-based performance
measures, such as precision-at-k and average-precision, is intimately related to
the solution of quadratic assignment problems. Both the task of test-time predic-
tion of the best ranking and the task of constraint generation in estimators based on
structured support vector machines can all be seen as special cases of quadratic as-
signment problems. Although such problems are in general NP-hard, we identify a
polynomially-solvable subclass (for both inference and learning) that still enables
the modeling of a substantial number of pairwise rank interactions. We show pre-
liminary results on a public benchmark image annotation data set, which indicates
that this model can deliver higher performance over ranking models without pair-
wise rank dependencies.

1 Introduction

In document retrieval, image retrieval, and image annotation problems, performance is often evalu-
ated based on a ranking of the items, e.g. the ranking of documents for a given query, or the ranking
of annotation terms for a given image. Well known ranking evaluation measures include precision-
at-k (p@k), and average precision (AP). For ranking, the prediction problem does not decompose
into a set of independent predictions, where a separate loss is incurred for each prediction, which is
for example the case for classification problems. This multi-variate nature of the loss function has
hindered the development of methods that directly optimize for ranking losses. Instead, the param-
eters are often trained using a proxy loss. For example, in image annotation it is common practice
to learn a classifier per annotation label, and the labels are then ranked by the classification score.
Following the development of the structured SVM framework [1, 2], learning ranking functions has
become an active area of research, see e.g. [3, 4, 5, 6, 7]. Once a model has been learned, these
methods compute a ranking by sorting items based on a score computed for each item. Methods
to learn the score functions optimized for a variety of different performance measures have been
developed, including AP in [3], and p@Xk in [4].

A feature that is missing in the existing methods, however, is the ability to encode pairwise corre-
lations between items, i.e. terms in the score function that will encourage some items to be ranked
at nearby locations, or conversely to be ranked far apart. In ranking problems such as image anno-
tation we expect strong correlations between the relevance of labels. Some labels will be positively
correlated, such as beach and sand, while others will be negatively correlated such as sofa and
car. Indeed, models for image understanding that exploit such correlations have been reported to
outperform models that do not, see e.g. [8, 9]. However these models are trained using maximum
likelihood criteria, and it is not obvious how they can be trained for ranking based losses. Recently
a solution was given for the problem of optimizing structured losses for multi-label classification
under pairwise label interactions for any graph topology [10], but multi-label losses are easier to
deal with than permutation-based losses since optimization over the permutation group is typically
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harder than over the power set. A principled strategy for optimising ranking losses under pairwise
item interactions is still an open problem.

In this paper we consider learning structured score functions, where items have interdependencies,
while optimizing directly for ranking losses. Our contributions are the following: (i) We define a
generic family of ranking models where inference takes the form of a quadratic assignment problem
(QAP), which is generally NP-hard. (ii) We identify a subclass of such models with linear loss
functions and star-structured interactions, where inference can be performed in polynomial time.
(iii) In particular, for the precision-at-k loss, this leads to a practical model where inference is linear
in the number of elements to rank, and exponential in the size of the number of elements in the fully
connected clique at the center of the star.

In the next section we review the most relevant related work. In Section 3 we introduce a general
framework to learn ranking models, which includes earlier approaches such as [3, 4]. In Section 4
we consider the case of learning structured models for the p@k loss. In Section 5 we apply the
model to an image annotation problem, and we summarize our conclusions in Section 6.

2 Related work

We use structured SVMs [1, 2] to learn ranking functions, as in [3, 4, 5]. In the latter works a ranking
is obtained by sorting items according to associated scores which are computed independently for
each item. For example in document retrieval, the score s; for document x; given a query gq is
computed as s; = (¢(x;, q), w), where a single w is learned. Similarly in image annotation the
score s; for a label 4 given an image x is computed as s; = (¢(x), w;), where the features are
identical, but a different weight vector w; is learned for each label. In either case, for each item to
be ranked a linear score is computed, that does not depend on the score of other items.

The class of linear ranking losses is defined in [4] as the set of loss functions that can be written as a
linear function of the permutation matrix II that encodes the ranking: A(II, z) = (Ila, b(z)), where
a is a loss-specific vector, and b(z) is a vector which encodes ground truth relevance annotation
(z; = 1 for relevant documents, and z; = 0 for irrelevant documents). The class of linear loss
functions includes the winner-takes-all loss (i.e. measuring wether the first item is correct), mean
reciprocal rank (i.e. defined as the inverse of the rank of the relevant item, assuming there is only
one), and p@k (i.e. how many items are there in the top-k) performance measures. For example,
the p@k loss is obtained by setting b = z and a; = 1 — % for 1 < ¢ < k, in this manner placing
an irrelevant document item in the top k reduces the p@k by % and increases the loss by the same
amount. In general, optimizing for a linear loss using independent scoring of items, leads to a linear
assignment problem [4], which has a worst case complexity that is cubic in the number of elements
to rank. An efficient approximate online learning approach for image annotation using a linear loss
was introduced in [5], for cases where it is too expensive to compute the score for all elements.

Average-precision (AP) provides a single-figure measure of quality across recall levels by averag-
ing p@k over all values of k occupied by relevant documents. The AP measure, however, is not
linear in the permutation matrix, but quadratic since the contribution of item ¢ to the performance
depends also on the relevance of the items ranked before and after item 4. To see this, let A be a
lower triangular matrix with % on the first & entries of the k-th row. Then [AIlz]; will contain the
p@k for each choice of k. The AP is obtained by averaging the p@k values over all positions of
relevant documents, thus by (Ilz, Allz)/(172) = Tr{AIBII' }, where B = 2z"/(172). In
general, for such quadratic loss functions, one has to solve NP-hard quadratic assignment problems
during learning. For the special case of the AP loss, however, a model where learning scales only
quadratically with the number of items to rank has been found [3]. In the next section we consider
similar quadratic forms for define score functions that will encourage pairs or items to be ranked
close together or far apart.

3 Learning quadratic ranking functions

When learning ranking models the training set consists of queries/images with corresponding rel-
evance labeling of the items to be ranked. We use x to denote the input data, which can be either
features for documents to be ranked for a query, or features of an image for which we want to rank



labels. We will use II to denote permutation matrices that encode the ranking of the items. Our
goal is to learn a function that will compute from an input « a ranking II that will incur a small loss
A(I1, z), where z denotes the ground-truth relevance labeling of the item.

Following the structured SVM learning paradigm [1, 2] we define a score function f(x,II; #) that
will compute a score for each input/output pair, and which is linear in the parameter vector 6. Our
prediction for query « will be the ranking IT which maximizes this score for a given input z, i.e.
I = argmaxyy f(x,II;6). To learn the parameters § we have to optimize the non-smooth loss
function, therefore we define a convex upper bound on the loss given by

L(z6) = max {A(IL 2) + f(2,15:6) } — f(2,1L;0), M

where IT is any permutation that attains the minimum possible loss.! We sum the bound for M
different training pairs (@,,, z,,) to obtain a bound on the empirical estimate of the expected loss:

M
Alimz_:l[/(zm,@) = ;mﬁx{A(H,zm) + f(azmyﬂ;e)} — f(@m, I3 0). )

To minimize this objective function, a variety of optimization methods can be used, including sub-
gradient methods, and cutting plane methods to solve a constraint optimization formulation of the
problem by introducing slack variables which introduce a linear constraint for each possible output.
All these methods involve solving for a given 6 the loss-augmented prediction problem, i.e. finding

I = arg max {A(H7 z) + f(x,1I; 9)} 3)

It is thus critical that this problem can be solved efficiently for the choice of loss A and score f.

Quadratic score functions for ranking problems We now define quadratic score functions with
terms that depend on the positions of two items in the ranking, and that can be written as the sum of
a quadratic and a linear form of the permutation matrix:

f(:c,H):fl(a:,H)+fq(w,H), “)

fl(:E,H) = 27 SiCr; = STHcv fq($aH) = Z” fijdﬂ,;,‘rrj :TI‘{FHDHT}, (5)

where we used m; = j to denote that item 4 is ranked at position j, i.e. II;; = 1, we have dropped

@ for clarity. In the linear term, the s; denote the per item scores, which are linear in the parameter

vector 6, and c is a design vector typically with non-increasing elements that encourages items with

a high score to be ranked high. In the quadratic term, where the f;; are parameters of the model,

and D is a design matrix. For example, we can define dy; = |k — [| as the distance between two

positions in the ranking. The quadratic term will then encode an incentive to put elements ¢ and j
close to each other in the ranking if f;; < 0, and to put them far away in the ranking if f;; > 0.

Finding the maximizer of such a score function, takes the form of a quadratic assignment problem
(QAP). Since in general QAPs are NP-hard, the above formulation is of limited practical importance,
unless approximate solutions are accepted, or additional structure is imposed on the quadratic terms.

Polynomial-time inference in c-star models Specific classes of QAPs are known to be solvable
in polynomial time. One such class, identified in [11], is the class of problems where the interac-
tions are restricted to form a c-star graph. That is, if there is a permutation matrix II such that in
IIFTIT all non-zero elements appear in the first C' rows and columns. In this case, we can solve
the QAP as follows. For given positions in the ranking of the C' elements in the core of the star, the
remaining items have no interactions among each other. The remaining optimization problem is a
linear assignment problem (LAP), which can be solved in O(NN?3), for N elements to rank. As there

are (g) C! placements of the C' core elements, the original QAP can be solved in O(N+3).

If we use a linear loss function, then in the loss-augmented inference problem only a term linear
in II is added, which thus leaves the structure in the quadratic terms intact. Therefore, for linear
loss functions, both loss-augmented inference and prediction can be done in O(N“*+3) time. This
is much better than the general NP-hard case, but still very challenging in practice for large N. In
the next section we show that for the specific case of p@k loss, and an appropriate definition of the
pairwise terms, we can obtain a much more efficient approach that scales linearly in V.

"Throughout we use II and IT* to refer to permutations attaining the minimum loss for a given ground-truth.



4 Learning quadratic score functions for p@k

Before defining our model, we first observe that the precision-at-k loss is only sensitive to which
elements are in the top k, not to how these are ordered, nor to how elements outside the top k are
ordered. Therefore, as far as the loss is concerned, instead of considering the set of all permutations
as our output space, we restrict ourselves to the set of all subsets of size k as our output space.

Score function for precision at £ We will now design a score function that exhibits the same
invariances as the loss, since there is little interest in differentiating among outputs that are equivalent
w.r.t. the loss function. The linear term f;(, 1) = s ' Ilc is designed to score highest for selecting
k elements with highest score, and to be invariant for permutations among each other. This can be
achieved by defining ¢ so that ¢; = 1 for 1 <4 < k, and ¢; = 0 otherwise. Since c is constant in the
first k elements, it is invariant to permutations among these, and similar for the last N — k elements.

For the quadratic term to be invariant for permutations among the top k elements, and among ele-
ments not in the top &, the matrix D must have a corresponding block structure where all elements
Dy Do
D3 Dy
matrix. Subtracting a constant from all blocks, will not change the predictions, nor the bound on the
loss function. Therefore, without loss of generality, we can set D4 = 0. Similarly, without loss of
generality, blocks D, and D3 can be set to zero by adding constants to the score functions s;, and
we can set D; to contain only 1’s. Using these definitions, and ¢ to denote the indicator vector of
which elements are in the top k, i.e. with ¢; = [m; < k], the score function is now simplified to:

,J

in the same block are equal: < ) , where D1 is a k x k matrix, and Dy a (n—k) x (n—k)

Efficient inference in c-star models We now invoke the observation from Section 3, that in c-star
QAPs can be solved by solving a set of LAPs, one for each assignment of the core of the star. Using
1 to index over elements not in the core of the star, and ¢ and ¢’ to index over elements that are in the
core, we can express the score function for a fixed assignment of the core as

f(ill, H) = Z 123 (Si + Ztcfic> + Z teSe + Z teter feer- (7N

[ c,c’

For fixed assignments of the core, the last two terms are constant. Therefore, the score is maximized
by selecting the elements ¢ with the largest values of s;+) " _ t. fic. The best overall subset of % items
can be found by looping over the 2¢ configurations of the core elements to be in the top k or not,
and finding the best elements to add to the top k from the non-core elements. Selecting the & largest
elements in a list of length N can be done in O(N) [12], and sorting these in O(k log k). Therefore,
the overall algorithm to find the best subset of & items has running time O(2° (N + klogk)). The
same holds for loss augmented inference, since we can write A,ar(I1,z) = (¢,1—2z)/k. By
replacing the s; with s; + (1 — z;)/k, the best subset is obtained in the same manner.

5 Application to image labeling

Dealing with ambiguous training data ground-truth In many supervised learning problems,
there is a unique target prediction. When learning p@k models, however, this is not necessarily
the case, for example for image labeling when an image does not have precisely k relevant labels.
Therefore, in general there will be many sets of k labels that attain the minimum possible loss for a
given image. With each of those sets we can construct an uppperbound on the loss using Eq. (1).

One way to address this is to realize that any output II that attains minimum loss (1) bounds the loss,
the tightest bound for any 6 is the minimum of these bounds, given by

L'(z,0) = ml_z[ix{A(H, z)+ f(a, 1)} — f(f[*,x), with IT* = argmfa{txf(fo). (8)

Since this bound is no longer convex, local minima of this objective can be obtained using a variety
of methods, such as sub-gradient descend, or CCCP.



Another way to bypass this issue would be to use a loss which has a unique minimal solution, and
thus IT* = II. Such a loss is given by the precision at k, with & the number of relevant items for this
image. This is also known as the “break-even precision” (BEP), note that the learning objective has
changed as well. In our experiments we follow this approach and report results on BEP.

Gradient calculation and kernel representation In practice we use a sub-gradient descend
method to learn the parameters, at each gradient evaluation we compute II*, and II* to compute
the gradient of L. Note that in this way we obtain the true gradient, except when either of the two
maximizers is not unique, which is a set of measure zero in the parameter space.

Using t* and £* to denote the indicator vectors for items ranked in the top k according to IT* and IT*
respectively, the gradients of the loss-bound in Eq. (1) or Eq. (8) are easily found using the definition
of the score function in Eq. (6):

1oL -~ oL’ -
i t*t*T _ t*t*T, _

5 5F s = tr—t". )
Thus for an interaction parameter f;; we obtain a gradient signal if ¢ and j are both in the top %
according to IT* but not according to IT*, or vice versa. Similarly, for the label scores s; we obtain
a gradient signal if IT* and I1* do not agree on ¢ being in the top k.

For linear score functions s;(x) = v; + w;'— x we see that the gradient w.r.t. the weight vectors w;
always lies in the span of the data vectors. Therefore, we can express the weight vector as a linear
combination of the training data points: w; = ), @, T, and the score function can be expressed
in the form of a kernel:

si(z) =vi+w ®=v; + Zaimf’?;@"f =v; + Zaimk(a:m, x). (10)

The kernel can implement the dot-product in an arbitrary feature representation extracted from the
image, e.g. based on popular bag-of-word image representations. Similarly, an /5 regularizer on the
w; vectors can now be expressed using the kernel expansion.

Experimental evaluation Next we present our experimental evaluation to learn the ranking of
labels for an image. For this we use the training set of the data set used in the ImageCLEF Photo
Annotation task in 2010 [13]. The images are labeled with 93 diverse concepts ranging from con-
cepts about people (e.g. single person, male, baby), visual appearance (e.g. macro, motion blur),
objects (e.g. car, airplane, fish) and scene descriptions (e.g. landscape, city life). The data set con-
tains of 8000 images with their Flickr-tags, we split the data into five folds (£6400 train and 1600
test images), and report results averaged over the folds. For the sake of clarity we omit standard
deviations since they are small compared to the differences between prediction methods. On aver-
age there are about 12 labels per image, and 830 images per label. We use the same features as the
system that won the ImageCLEF 2010 Photo Annotation task [14], and which was also been used
in [9], a concatenation of the improved Fisher vector representation [15] computed over SIFT and
color features, and a binary vector denoting the presence of the most common Flickr-tags. In the
experiments we compare the results when training the model using a kernel based representation,
and when using scores of 93 one vs. all trained SVM classifiers.

In the experiments we compare an independent model (so without label dependencies) to a model
with a c-star of 5 nodes. The 5 nodes for the core where chosen to optimise for the joint mutual
information, in a greedy fashion. In Table 1 we show the results of our models on Break Even
Point-precision, the precision-at-k where k is the number of relevant labels for this specific image.
We observe that using the kernel representation gives a small but marked improvement over using
the pre-trained SVM scores, this might be because the SVMs were trained for accuracy and not for
BEP. We also see that the c-star structured models improve BEP performance by about 1% to 1.5%.

To investigate the influence of the structured models more, we also evaluate in an interactive image
labeling setting, as also explored in [9]. The systems selects interactively a label, it obtains the
relevance of this label from a user (in this experiment the relevance of the label is obtained from
the ground truth). To select the label to query to the user, we use an idea related to the entropy but
adjusted for the max-margin framework. For each label we compute the maximum score that can
be obtained when it is forced be inside or outside the top k. The difference between the two scores



Table 1: Break Even Point precision on ImageCLEF’10 for the independent and structured models.
The performance is measured without human labeling and after @ = {1,5, 10} questions.
Independent C-Star, C=5
Auto QI Q5 QI0 || Auto Ql Q5 Ql0
Pre-Trained SVM scores || 66.6 | 68.5 750 81.1 || 68.0 | 69.8 76.1 81.6
Kernel 67.8 | 69.7 76.1 82.1 68.6 | 706 772 833

relates to the confidence of the system that the label should be selected or not. Intuitively, if the two
scores are far apart the model prefers a specific state of the label (low entropy), while if the scores
are very close the model does not care (high entropy). For each image we select the label with the
lowest score difference. The results of the interactive image labeling experiment are also shown in
Table 1. It shows that the structured model consistently improves over the independent model.

6 Conclusion

In this paper we have considered the relation between structured ranking models and quadratic as-
signment problems. While quadratic assignment problems are in general NP hard, we have identified
a subclass which is solvable in polynomial time. Using the c-star models, and a loss function related
to the precision-at-k measure, the algorithm runs in O(2¢ (N + klog k)). We have experimentally
shown the performance of our model on a diverse and challenging image labeling dataset, where we
rank the labels of a vocabulary according to the relevance for a given image. The c-star models show
a modest but consistent improvement over the model assuming independent labels.
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