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Abstract

It has been shown that isometric matching problems can be solved exactly
in polynomial time, by means of a Junction-Tree with small maximal
clique size. Recently, an iterative algorithm was presented which converges
to the same solution an order of magnitude faster. Here, we build on both
of these ideas to produce an algorithm with the same asymptotic running
time as the iterative solution, but which requires only a single iteration of
belief propagation. Thus our algorithm is much faster in practice, while
maintaining similar error rates.
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1 Introduction

A fundamental problem in Computer Vision and Pattern Recognition is to find a
correspondence between two sets of image features. This has many applications,
including reconstruction of the spatial geometry of a 3D scene (such as Hartley
& Zisserman (2004)), feature-based object recognition (such as Felzenszwalb &
Huttenlocher (2005)), and people detection in images (such as Caetano et al.
(2007)).

We investigate a particular instance of the matching problem called near-
isometric point pattern matching. In this setting, one assumes that the two
feature sets to be matched differ only by isometric transformations, but allow-
ing for point jitter and outliers. Therefore, the two sets may have different
sizes. We introduce a method for obtaining the best match in the above setting
which turns out to be much faster than the best competitor, while maintaining
the same accuracy guarantees. Our method is directly inspired by the early
work on probabilistic graphical models for matching using Junction Trees, first
introduced in Caelli & Caetano (2005).
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2 Background

The problem of point pattern matching consists of finding an instance of a
‘template’ graph (say, S) in a ‘target’ scene (say, U).1 In this paper we will
assume that the instance (S ′) of S in U is simply a near-isometric transformation
of S (i.e. an isometric transformation, subject to some noise). In other words,
we are attempting to find a mapping ŷ : S → U such that the distances between
pairs of points in S are preserved in S ′. That is,

ŷ = argmax
y

∑
i,j;i 6=j

−|d(si, sj)− d(y(si), y(sj))|2 (1)

(d(a, b) is simply the Euclidean distance between a and b). Unfortunately, this
is an instance of the quadratic assignment problem, which is NP-hard in general
(see Anstreicher (2003)).

It was shown however in Caetano et al. (2006) that under isometric transfor-
mations, it is not necessary to include dependencies between all pairs of nodes,
but rather it is sufficient that the dependency structure constitutes a globally
rigid graph (see Connelly (2005)). In such a graph, the lengths of the present
edges uniquely determine the lengths of the absent edges (and thus the absent
edges can be ignored – see Caetano et al. (2006) for details). Importantly, it
is shown in Caetano & Caelli (2006) that there exist globally rigid graphs with
small tree-width (see figure 2), meaning that the problem of (eq. 1) can be
solved efficiently by means of exact probabilistic inference in a graphical model
with small maximal clique size.

2.1 Preliminaries

Being more formal, we start by reviewing the general modeling methodology in
the line of work of Caelli & Caetano (2005), Caetano et al. (2006), Caetano &
Caelli (2006), McAuley et al. (2008), which is also explored in this paper. One
represents the problem of finding a correspondence between two sets of point
features as a problem of finding the most likely realisation of random variables
in a Markov Random Field (i.e. an undirected probabilistic graphical model –
see Bishop (2006), Pearl (1988)). Each point in S is represented by a random
variable, which is graphically depicted by a circle in the probabilistic graphical
model (see figures 1 and 2). Each random variable has a state space consisting of
|U| possible realisations, i.e. the number of point features in the scene pattern.
Indeed, in this model the fact that the random variable si has realisation uj has
precisely the semantics that the point si in S is matched to the point uj in U .
Therefore, an entire joint realisation of the graphical model consisting of all the
variables {s1, . . . , s|S|} represents an entire match between the point patterns S
and U . In a Markov Random Field, edges between nodes represent the pattern
of conditional independence statements assumed in the model. More precisely, if
n(i) is the set of nodes connected to node i by an edge, then the model assumes

1Strictly, we are talking about embeddings of graphs in the plane.
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Figure 1: A k-tree graph. The square denotes an entire clique of k nodes. Note
that the set of nodes {1 . . . k, i}, for k < i ≤ n, forms a maximal clique in this
diagram.

p(yi|yrest) = p(yi|yn(i)). Under this model, the probability of a match y is, by
the Hammersley-Clifford theorem, decomposed over the maximal cliques of the
underlying graph:

p(Y = y) =
1
Z

∏
c∈C

ψc(yc), (2)

where C is the set of maximal cliques c in the graph and ψc(yc) are arbitrary
non-negative real-valued functions, called potential functions, which intuitively
encode the ‘goodness’ of the partial match yc for the variables in the clique c.
In other words, the Hammersley-Clifford theorem gives a clear algebraic form
for the joint distribution that satisfies the conditional independence statements
assumed in the model. Therefore, in order to find the most likely joint realisation
in such a model (which corresponds to the best point matching), one needs to
find y that maximises an expression which factorises over the variables in the
cliques of the graph, as shown in (eq. 2).

2.2 Models for Matching

In Caetano & Caelli (2006), it is shown that by using a k-tree as a graphical
model (figure 1), one can solve matching problems under translations, similarity,
affine, and projective transformations (for k = 1, 2, 3, 4 respectively), due to
the number of variables involved in each type of transformation. This is done
by encoding in each maximal clique a potential function ψc(yc) that enforces
agreement of transformations of points in that clique.2 Of interest to us is the
fact (shown in Caetano et al. (2006)) that a 2-tree can be used to solve matching
problems under rotation and translation, whereas isometric matching problems
(i.e. rotations, translations, and reflections) can be solved using a 3-tree (due
to its global rigidity). Furthermore, it is shown that inference in a k-tree can
be solved in O(|S||U|k+1) time by means of the Junction-Tree algorithm.

2For example, for affine-invariant matches, k = 3 and the joint assignment in the 4-clique
{1, 2, 3, i} needs to be such that the joint realisations in each of the 4 triangles within the
clique induce the same affine transformation.
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In McAuley et al. (2008), the authors present another graph which is also
globally rigid, but whose maximal clique size is smaller (three nodes instead of
four). However, the clique-graph of their model no longer forms a tree, meaning
that standard Junction-Tree algorithms cannot be applied. Instead, they show
that Loopy Belief Propagation in such a graph will converge to the optimal
solution, though not necessarily in a single iteration. Thus the asymptotic
complexity is decreased from O(|S||U|4) to O(|S||U|3). Their experiments reveal
that in practice, the performance increase is very close to |U|, despite having to
run the algorithm for several iterations.

3 Our Model

As mentioned, a 2-tree can be used to solve matching problems subject to trans-
lations and rotations. To achieve this, we enforce not only that the mapping ŷ
preserves the distances between nodes, but also that it preserves orientations be-
tween triangles. That is, for a 2-tree graph (say, G), the problem of maximising
(2) becomes

ŷ = argmax
y

∏
i,j∈G

exp(−|d(si, sj)− d(y(si), y(sj))|22)︸ ︷︷ ︸
edges

×

|S|∏
i=3

I

(
sign(det(

[
s1 − si

s2 − si

]
)) = sign(det(

[
y(s1)− y(si)
y(s2)− y(si)

]
))
)

︸ ︷︷ ︸
triangles

(3)

(the sign of the determinant determines the orientation of the triangle; I(·) is
an indicator function; note that this is equivalent to a max-sum formulation in
which assignments not obeying the above equality are given a potential of −∞).

The idea behind our method stems from the realisation that such a model
can also be used to handle reflections, simply by running it twice: during the
first iteration, we insist that the orientations are preserved by the mapping (as
in (eq. 3)), whereas during the second iteration, we insist that the orientations
are different. We then simply choose the ŷ which has the lower cost amongst
both iterations.

To continue this idea, we can augment our 2-tree to include a boolean vari-
able encoding both of these possibilities. The graphical model we use is shown
in figure 2 (bottom). Note that we do not actually use a 2-tree, but our graph
maintains the same properties (we choose this topology for easier comparison
to the method of McAuley et al. (2008)). Notice that although the maximal
clique size of our model is increased from three to four, the asymptotic running
time is not changed by this addition – it is still O(|U||S|3), and only a single
iteration is required. This is because the number of states of the new boolean
variable is (obviously) two (independent of |U| or |S|)
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To be precise, we add the variable R to our model, with domain {0, 1}. Our
maximisation problem now becomes

ŷ, r̂ = argmax
y,r

|S|∏
i,j∈G

exp(−|d(si, sj)− d(y(si), y(sj))|22)×

|S|−2∏
i=1

[
(1− r)I (sd(si, si+1, si+2) = sd(y(si), y(si+1), y(si+2)))

+ rI (sd(si, si+1, si+2) 6= sd(y(si), y(si+1), y(si+2)))
]

(4)

(where sd(a, b, c) is simply the sign of the determinant sign(det(
[
a− c
b− c

]
)); r̂

now recovers whether the template scene is reflected (r̂ = 1) or not (r̂ = 0) in
the target).

Although this model will correctly solve isometric matching problems, it will
be somewhat sensitive to noise, as a small error in a single point can change the
orientation of a triangle (if it contains an angle very close to 0◦ or 180◦). Hence,
rather than imposing an infinite penalty upon triangles with non-matching ori-
entations, we suggest a ‘soft-error’ model which imposes a penalty of P |ϕ|2,
where ϕ is the smallest angle by which we could rotate a point to give the two
triangles the same orientation, and the same angle (see figure 3 for examples).3

The constant P is determined experimentally (we found P = 100 to work well
in practice).

4 Experiments

We implemented the proposed model, as well as those from Caetano et al. (2006)
and McAuley et al. (2008) (with topologies shown in figure 2) in C++ using
the Blitz++ array library.4 OpenMP was used to parallelise the initialisation of
our model, which simply consists of computing the potential for each possible
assignment, and is done independently in each clique. Experiments were run
on a Quad-Core, 2.66Ghz machine. When using the method of McAuley et al.
(2008) we ran 20 iterations of belief propagation (in McAuley et al. (2008), the
authors use a convergence test after each iteration, and stop the algorithm at
convergence; we have chosen not to do so, as running this test appears to take
almost as long as propagation itself).

4.1 House Data

For our first experiment, we consider the CMU ‘house’ sequence,5 a sequence of
111 frames of a toy house, with the same 30 points labelled in each frame. This

3In the max-product setting, we multiply the potential by exp(−P |ϕ|2).
4Blitz++ array library: http://www.oonumerics.org/blitz
5CMU ‘house’ sequence: http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
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a©

b©

c©

Figure 2: Graphical models (left), and their clique-graphs (right). a© – The
model of McAuley et al. (2008). b© – The model of Caetano & Caelli (2006).
c© – The proposed model.
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Figure 3: Three examples mapping the triangle (ABC) to (abc). 1© – the
orientations are different; the penalty is the squared sum of the smaller angles,
(Λ + λ)2. 2© – the orientations are different; the penalty is (Θ + θ)2. 3© – the
orientations are the same; there is no penalty.

experiment appeared in both Caetano et al. (2006) and McAuley et al. (2008),
and is presented here for comparison.

In figure 4 (top), we compare the performance of our model to those of
Caetano et al. (2006) and McAuley et al. (2008) as the baseline (separation
between frames) increases (the problem becomes increasingly difficult for higher
baselines, as the house is gradually subject to more significant non-isometric
transformations).

It is interesting to note that when imposing a hard-error (i.e. when strictly
enforcing that orientations are consistent), our model appears to perform worse
than those of Caetano et al. (2006) and McAuley et al. (2008) for low baselines,
but much better for high baselines. As a possible explanation, we may observe
poor performance with a low baseline due to our model’s sensitivity to noise; the
better performance for high baselines may simply be explained by the fact that
our potential function implicitly enforces that mappings are injective within
cliques, whereas the potentials of Caetano et al. (2006) and McAuley et al.
(2008) do not. Alternately, when using a soft error, we observe almost identical
performance to the other methods.

The bottom of figure 4 compares the running time of our method against
those of Caetano et al. (2006) and McAuley et al. (2008). In McAuley et al.
(2008), the authors reported an improvement of almost precisely |U| over the
method of Caetano et al. (2006), despite the fact that their algorithm requires
several iterations to converge. The explanation for this appears to be that the
running time of their implementation is dominated by the initialisation stage
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Figure 4: Performance on the ‘house’ dataset. Top: Error as the baseline
(separation between frames) increases. Our model (JT, 3-cliques) is compared
to those of Caetano & Caelli (2006) (JT, 4-cliques) and McAuley et al. (2008)
(LBP). Our model with hard error appears to exhibit the best performance for
higher baselines, despite performing slightly worse for lower baselines (each of
the other models appears to perform equally). Bottom: Time taken to initialise
the model (left), and to perform belief propagation (right). For each baseline,
the average performance on all examples is shown, with error bars indicating
standard error.
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a©

b©

c©

Figure 5: a© – The topology of our graphical model. b© – An example matching,
using the model of McAuley et al. (2008) (9/30 points correct, mismatches are
shown in red). c© – An example matching, using the proposed method (23/30
points correct, using hard-error).

(i.e. computing the clique potentials), whereas message passing is done using
efficient array libraries. We have attempted to address this issue by parallelising
the initialisation stage, meaning that we are able to do initialisation much faster
than propagation. As expected, our initialisation is slower than that of McAuley
et al. (2008), due to the fact that we must compute a potential not only for each
triangle, but also for each orientation. However, this is more than made up for
during propagation, wherein our algorithm achieves a marked improvement.

Figure 5 shows the topology of our model, as well as an example of matching
using our model and that of McAuley et al. (2008).

4.2 Synthetic Data

For our second experiment, we use a silhouette image from the Mythological
Creatures 2D database (from Bronstein, Bronstein & Kimmel (2007), Bronstein,
Bronstein, Bruckstein & Kimmel (2007)).6 We randomly selected 30 points on
the silhouette, and randomly perturbed their x and y-coordinates uniformly
between −ε/2 and ε/2 pixels. For each value of ε (from 0 to 20), 20 such
perturbations were created, resulting in 20× 19 = 380 pairs for matching. The
results of matching in this setting are shown in figure 6. The performance of
all four models is similar for this dataset (and the running times are similar to
those of the previous experiment).

Figure 7 shows an example of matching using this dataset. Since the order
of points in our graphical model is chosen at random for this experiment, the
topology of our model appears to have much less ‘structure’ than in figure 5.

6Mythological Creatures 2D database: http://tosca.cs.technion.ac.il
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Figure 6: Performance on the synthetic dataset. Top: Error as ε (epsilon)
increases. Our model (JT, 3-cliques) is compared to those of Caetano & Caelli
(2006) (JT, 4-cliques) and McAuley et al. (2008) (LBP). In this case, using a
hard-error appears to result in slightly worse performance, whereas the other
models appear to perform equally. Bottom: Time taken to initialise the model
(left), and to perform belief propagation (right). For each value of ε, the average
performance on all examples is shown, with error bars indicating standard error.

10



a©

b©

c©

Figure 7: a© – The topology of our graphical model. In contrast with the
topology shown in figure 5, the nodes are ordered randomly. b© – An exam-
ple matching, using the model of McAuley et al. (2008) (22/30 points correct,
mismatches are shown in red). c© – An example matching, using the proposed
method (24/30 points correct, using hard-error).

5 Conclusion

We have presented a model for performing near-isometric point pattern match-
ing which is faster than its nearest competitors, while maintaining the same ac-
curacy guarantees. In comparison to the approach of Caetano & Caelli (2006),
whose running time is O(|S||U|4) (where |S| and |U| are the sizes of the template
and target scenes, respectively), and the approach of McAuley et al. (2008),
whose running time is O(|S||U|3) per iteration, the running time of our method
is O(|S||U|3), but requires only a single iteration to converge. This result is
achieved by noting that a 2-tree can be used to perform matching up to rota-
tion and translation, if we either enforce or prohibit that the template scene
is reflected in the target. We then augment this model to include a boolean
variable, allowing for both of these possibilities.
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