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Abstract

Consider the following problem: given sets of
unlabeled observations, each set with known
label proportions, predict the labels of an-
other set of observations, also with known
label proportions. This problem appears in
areas like e-commerce, spam filtering and im-
proper content detection. We present con-
sistent estimators which can reconstruct the
correct labels with high probability in a uni-
form convergence sense. Experiments show
that our method works well in practice.

1 Introduction

Assume that a web services company wants to increase
its profit in sales. Obviously sending out discount
coupons will increase sales, but sending coupons to
customers who would have purchased the goods any-
way decreases the margins. Alternatively, failing to
send coupons to customers who would only buy in case
of a discount reduces overall sales. We would like to
identify the class of would-be customers who are most
likely to change their purchase decision when receiv-
ing a coupon. The problem is that there is no direct
access to a sample of would-be customers. Typically
only a sample of people who buy regardless of coupons
(those who bought when there was no discount) and a
mixed sample (those who bought when there was dis-
count) are available. The mixing proportions can be
reliably estimated using random assignment to control
and treatment groups. How can we use this informa-
tion to determine the would-be customers?

Likewise, consider the problem of spam filtering.
Datasets of spam are likely to contain almost pure
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spam (this is achieved e.g. by listing e-mails as spam
bait), while user’s inboxes typically contain a mix of
spam and non-spam. We would like to use the inbox
data to improve estimation of spam. In many cases
it is possible to estimate the proportions of spam and
non-spam in a user’s inbox much more cheaply than
the actual labels. We would like to use this informa-
tion to categorize e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with
“improper content”. Datasets of such images are read-
ily accessible thanks to user feedback, and it is rea-
sonable to assume that this labeling is highly reliable.
However the rest of images on the web (those not la-
beled) is a far larger dataset, albeit without labels (af-
ter all, this is what we would like to estimate the labels
for). That said, it is considerably cheapter to obtain
a good estimate of the proportions of proper and im-
proper content in addition to having one dataset of
images being of likely improper content. We would
like to obtain a classifier based on this information.

In this paper we present a method to estimate labels
directly in such situations, assuming that only label
proportions be known. In the above examples, this
would be helpful in identifying potential customers,
spam e-mails and improper images. We prove bounds
indicating that the estimates obtained are close to
those from a fully labeled scenario. The formal setting
though is more general than the above examples might
suggest: we do not require any label to be known, only
their proportions within each of the involved datasets.
Also we are not restricted to the binary case but in-
stead can deal with large numbers of classes.

Problem Formulation Assume that we have n sets
of observations Xi =

{
xi1, . . . , x

i
mi

}
of respective sam-

ple sizes mi (our calibration set) as well as a set
X = {x1, . . . , xm} (our test set). Moreover, assume
that we know the fractions πiy of patterns of labels
y ∈ Y (|Y| ≤ n) contained in each set Xi and assume
that we also know the marginal probability p(y) of the
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Table 1. Notation Conventions

Xi ith set of observations: Xi = {xi
1, . . . , x

i
mi
}

mi number of observations in Xi

X test set of observations: X = {x1, . . . , xm}
Y test set of labels: Y = {y1, . . . , ym}
m number of observations in the test set X
πiy proportion of label y in set i
φ(x, y) map from (x, y) to a Hilbert Space

Table 2. Major quantities of interest in the paper

Numbers on the left represent the order in which the cor-
responding quantity is computed in the algorithm (let-
ters denote the variant of the algorithm: ‘a’ for general
feature map φ(x, y) and ‘b’ for factorizing feature map
φ(x, y) = ψ(x)⊗ϕ(y)). Lowercase subscripts refer to model
expectations, uppercase subscripts are sample averages.

Expectations with respect to the model:
µxy := E(x,y)∼p(x,y)[φ(x, y)]

µclass
x [y, y′] := E(x)∼p(x|y)[φ(x, y′)]
µset

x [i, y′] := E(x)∼p(x|i)[φ(x, y′)]

µclass
x [y] := E(x)∼p(x|y)[ψ(x)]
µset

x [i] := E(x)∼p(x|i)[ψ(x)]

Expectations with respect to data:
µXY := 1

m

Pm
i=1 φ(xi, yi)

(1a) µset
X [i, y′] := 1

mi

P
x∈Xi

φ(x, y′) (known)

(1b) µset
X [i] := 1

mi

P
x∈Xi

ψ(x) (known)

Estimates:
(2) µ̂class

x = (π>π)−1π>µset
X

(3a) µ̂XY =
P

y∈Y p(y)µ̂class
x [y, y]

(3b) µ̂XY =
P

y∈Y p(y)ϕ(y)⊗ µ̂class
x [y]

(4) θ̂∗ solution of (5) for µXY = µ̂XY .

test set X.1 It is our goal to design algorithms which
are able to obtain conditional class probability esti-
mates p(y|x) solely based on this information. As an
illustration, take the spam filtering example. We have
X1 = “mail in spam box” (only spam) and X2 = “mail
in inbox” (spam mixed with non-spam). The test set
X then may be X2 itself, for example. The goal is to
find p(spam|mail) in X2. Note that (for general πiy)
this is more difficult than transduction, where we have
at least one dataset with actual labels plus an unla-
beled test set where we might have an estimate as to
what the relative fractions of class labels might be.

2 Mean Operators

Our idea relies on uniform convergence properties of
the expectation operator and of corresponding risk
functionals (Altun & Smola, 2006). In doing so, we
are able to design estimators with the same perfor-
mance guarantees in terms of uniform convergence as
those with full access to the label information.

1Label dictionaries Yi do not need to be the same across
all sets i: define Y := ∪i Yi and allow for πiy = 0 as needed.

2.1 Exponential Families

Denote by X the space of observations and let Y be the
space of labels. Moreover, let φ(x, y) : X×Y→ H be a
feature map into a Reproducing Kernel Hilbert Space
(RKHS) H with kernel k((x, y), (x′, y′)). In this case
we may state conditional exponential models via

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) with (1)

g(θ|x) = log
∑
y∈Y

exp 〈φ(x, y), θ〉 , (2)

where the normalization g is called the log-partition
function. For {(xi, yi)} drawn iid from a distribution
p(x, y) on X× Y the conditional log-likelihood is

log p(Y |X, θ) =
m∑
i=1

[〈φ(xi, yi), θ〉 − g(θ|xi)] (3)

= m 〈µXY , θ〉 −
m∑
i=1

g(θ|xi)

where µXY is defined as in Table 2. In order to avoid
overfitting one commonly maximizes the log-likelihood
penalized by a prior p(θ). This means that we need to
solve the following optimization problem

θ∗ := argmin
θ

[− log p(Y |X, θ)p(θ)] . (4)

For instance, for a Gaussian prior on θ, i.e. for
− log p(θ) = λ ‖θ‖2 + const. we have

θ∗ = argmin
θ

[
m∑
i=1

g(θ|xi)−m 〈µXY , θ〉+ λ ‖θ‖2
]
.(5)

The problem is that in our setting we do not know
the labels yi, so the sufficient statistics µXY cannot
be computed exactly. The only place where the labels
enter the estimation process is via the mean µXY . Our
strategy is to exploit the fact that this quantity, how-
ever, is statistically well behaved and converges under
relatively mild technical conditions at rate O(m−

1
2 ) to

its expected value (see Theorem 2)

µxy := E(x,y)∼p(x,y)[φ(x, y)]. (6)

Our goal therefore will be to estimate µxy and use it as
a proxy for µXY , and only then solve (5) with the es-
timated µ̂XY instead of µXY . We will discuss explicit
convergence guarantees in Section 3 after describing
how to compute the mean operator in detail.

2.2 Estimating the Mean Operator

In order to obtain θ∗ we would need µXY , which is
impossible to compute exactly, since we do not have
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Y . However, we know that µXY and µxy are close.
Hence, if we are able to approximate µxy this, in turn,
will be a good estimate for µXY .

Our quest is therefore as follows: express µxy as a
linear combination over expectations with respect to
the distributions on the datasets X1, . . . , Xn (where
n ≥ |Y|). Secondly, show that the expectations of the
distributions having generated the sets Xi (µset

x [i, y′],
see Table 2) can be approximated by empirical means
(µset
X [i, y′], also see Table 2). Finally, we need to com-

bine both steps to provide guarantees for µXY .

It will turn out that in certain cases some of the al-
gebra can be sidestepped, in particular whenever we
may be able to identify several sets with each other
(e.g. the test set X is one of the training datasets Xi)
or whenever φ(x, y) factorizes into ψ(x)⊗ ϕ(y).

Mean Operator: Since µxy is a linear operator map-
ping p(x, y) into a Hilbert Space we may expand µxy

µxy =
∑
y∈Y

p(y)Ex∼p(x|y)[φ(x, y)] =
∑
y∈Y

p(y)µclass
x [y, y]

where the shorthand µclass
x [y, y] is defined in Table 2.

This means that if we were able to compute µclass
x [y, y]

we would be able to “reassemble” µxy from its indi-
vidual components. We now show that µclass

x [y, y] can
be estimated directly.

Key to our assumptions is that p(x|y, i) = p(x|y). In
other words, we assume that the conditional distribu-
tion of x is independent of the index i, as long as we
know the label y. This yields the following:

p(x|i) =
∑
y

p(x|y)πiy. (7)

This allows us define the following means

µset
x [i, y′] := Ex∼p(x|i)[φ(x, y′)]

(7)
=
∑
y

πiyµ
class
x [y, y′].

Note that in order to compute µset
x [i, y′] we do not need

any label information with respect to p(x|i). However,
since we have at least |Y| of those equations and we
assumed that π has full rank, they allow us to solve
a linear system of equations and compute µclass

x [y, y]
from µset

x [i, y′] for all i. That is, we may use

µset
x = πµclass

x and hence µclass
x = (π>π)−1π>µset

x (8)

to compute µclass
x [y, y] for all y ∈ Y. Whenever

π ∈ Rn×n is invertible (8) reduces to µclass
x = π−1µset

x .
With some slight abuse of notation we have µclass

x and
µset
x represent the matrices of terms µclass

x [y, y′] and
µset
x [i, y′] respectively.

Algorithm 1
Input datasets X, {Xi}, probabilities πiy and p(y)
for i = 1 to n and y′ ∈ Y do

Compute empirical means µset
X [i, y′]

end for
Compute µ̂class

x = (π>π)−1π>µset
X

Compute µ̂XY =
∑
y∈Y p(y)µ̂class

x [y, y]
Solve the minimization problem

θ̂∗ = argmin
θ

[
m∑
i=1

g(θ|xi)−m 〈µ̂XY , θ〉+ λ ‖θ‖2
]

Return θ̂∗.

Obviously we cannot compute µset
x [i, y′] explicitly,

since we only have samples from p(x|i). However the
same convergence results governing the convergence of
µXY to µxy also hold for the convergence of µset

X [i, y′]
to µset

x [i, y′]. Hence we may use the empirical average
µset
X [i, y′] as the estimate for µset

x [i, y′] and from that
find an estimate for µXY (see Algorithm 1).

2.3 Special Cases

In some cases the calculations described in Algorithm 1
can be carried out more efficiently.

Minimal number of sets, i.e. |Y| = n: Provided
that π has full rank, (π>π)−1π> = π−1. This means
that the inverse can be computed more directly.

Testing on one of the calibration sets, i.e. X =
Xi: This means that X is one of the training sets.
We only need one less set of observations. This is
particularly useful for factorizing feature maps.

Special feature map φ(x, y) = ψ(x)⊗ ϕ(y): In this
case the calculations of µ̂class

x [y, y′] and µset
X [i, y′] are

greatly simplified, since we may pull the dependency
on y out of the expectations. Defining µclass

x [y], µset
x [i],

and µset
X [i] as in Table 2 allows us to simplify

µ̂XY =
∑
y∈Y

p(y)ϕ(y)⊗ µ̂class
x [y] (9)

where µ̂class
x = (π>π)−1π>µset

X . (10)

A significant advantage of (10) is that we only need
to perform O(n) averaging operations rather than
O(n·|Y|). Obviously the cost of computing (π>π)−1π>

remains unchanged but the latter is negligible in com-
parison to the operations in Hilbert Space.

Binary classification: One may show that the fea-
ture map φ(x, y) takes on a particularly appealing form
of φ(x, y) = yψ(x) where y ∈ {±1}. This follows since
we can always re-calibrate 〈φ(x, y), θ〉 by an offset in-
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dependent of y such that φ(x, 1) + φ(x,−1) = 0.

If we moreover assume that X1 only contains class 1
and X2 = X contains a mixture of classes with labels
1 and −1 with proportions p(1) =: ρ and p(−1) = 1−ρ
respectively, we obtain the mixing matrix

π =
[

1 0
ρ 1− ρ

]
⇒ π−1 =

[
1 0
−ρ
1−ρ

1
1−ρ

]
Plugging this into (10) and the result in (9) yields

µ̂XY = ρµset
X [1]− (1− ρ)

[
−ρ
1−ρµ

set
X [1] + 1

1−ρµ
set
X [2]

]
= 2ρµset

X [1]− µset
X [2]. (11)

Consequently taking a simple weighted difference be-
tween the averages on two sets, e.g. one set containing
spam whereas the other one containing an unlabeled
mix of spam and non-spam allows one to obtain the
sufficient statistics needed for estimation.

3 Convergence Bounds

The obvious question is how well µ̂XY manages to ap-
proximate µXY and secondly, how badly any error in
estimating µXY would affect the overall quality of the
solution. We approach this problem as follows: first we
state the uniform convergence properties of µXY and
similar empirical operators relative to µxy. Secondly,
we apply those bounds to the cases discussed above,
and thirdly, we show that the approximate minimizer
of the log-posterior has a bounded deviation from what
we would have obtained by knowing µXY exactly.

3.1 Uniform Convergence for Mean Operators

In order to introduce the key result we need to intro-
duce Rademacher averages:

Definition 1 (Rademacher Averages) Let X be a
domain and p a distribution on X and assume that
X := {x1, . . . , xm} is drawn iid from p. Moreover, let
F be a class of functions X→ R. Furthermore denote
by σi Rademacher random variables, i.e. {±1} valued
with zero mean. The Rademacher average is

Rm(F, p) := EXEσ

[
sup
f∈F

∣∣∣∣∣ 1
m

m∑
i=1

σif(xi)

∣∣∣∣∣
]
. (12)

This quantity measures the flexibility of the function
class F — in our case linear functions in φ(x, y).

Theorem 2 (Convergence of Empirical Means)
Denote by φ : X → B a map into a Banach space
B, denote by B∗ its dual space and let F the class of
linear functions on B with bounded B∗ norm by 1.

Let R > 0 such that for all f ∈ F we have |f(x)| ≤ R.
Moreover, assume that X is an m-sample drawn from
p on X. For ε̄ > 0 we have that with probability at
least 1− exp(−ε̄2m/2R2) the following holds:

‖µX − µx‖B ≤ 2Rm(F, p) + ε̄ (13)

For k ≥ 0 we only have a failure probability of 1 −
exp(−ε̄2m/R2).

Theorem 3 (Bartlett & Mendelson (2002))
Whenever B is a Reproducing Kernel Hilbert Space
with kernel k(x, x′) the Rademacher average can be
bounded from above by Rm(F) ≤ m− 1

2 [Ex[k(x, x)]]
1
2

Our approximation error can be bounded as follows.
From the triangle inequality we have:

‖µ̂XY − µXY ‖ ≤ ‖µ̂XY − µxy‖+ ‖µxy − µXY ‖ .

For the second term we may employ Theorem 2 di-
rectly. To bound the first term note that by linearity

ε := µ̂XY − µxy =
∑
y

p(y)
[
(π>π)−1π>ε̂

]
y,y

(14)

where we define the matrix of coefficients

ε̂ [i, y′] := µset
x [i, y′]− µset

X [i, y′]. (15)

Now note that all ε̂ [i, y′] also satisfy the conditions of
Theorem 2 since the sets Xi are drawn iid from the
distributions p(x|i) respectively. We may bound each
term individually in this fashion and subsequently ap-
ply the union bound to ensure that all n · |Y| com-
ponents satisfy the constraints. Hence each of the
terms needs to satisfy the constraint with probability
1− δ/(n|Y|) to obtain an overall bound with probabil-
ity 1 − δ. To obtain bounds we would need to bound
the linear operator mapping ε̂ into ε.

3.2 Special Cases

A closed form solution in the general case is not par-
ticularly useful. However, we give an explicit analy-
sis for two special cases: firstly the situation where
φ(x, y) = ψ(x) ⊗ ϕ(y) and secondly, the binary clas-
sification setting where φ(x, y) = yψ(x) and Xi = X,
where much tighter bounds are available.

Special feature map We only need to deal with n
rather than with n×|Y| empirical estimates, i.e. µset

X [i]
vs. µset

X [i, y′]. Hence (14) and (15) specialize to

ε =
∑
y

p(y)
n∑
i=1

ϕ(y)⊗
[
(π>π)−1π>

]
yi
ε̂[i] (16)

ε̂ [i] := µset
x [i]− µset

X [i]. (17)
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Assume that with high probability each ε̂[i] satisfies
‖ε̂[i]‖ ≤ ci (we will deal with the explicit constants ci
later). Moreover, assume for simplicity that |Y| = n
and that π has full rank (otherwise we need to follow
through on our expansion using (π>π)−1π> instead of
π−1). This implies that

‖ε‖2 =
∑
i,j

〈ε̂[i], ε̂[j]〉 ×

∑
y,y′

p(y)p(y′)k(y, y′)
[
π−1

]
yi

[
π−1

]
y′j

≤
∑
i,j

cicj

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

(18)

where Ky,p
y,y′ = k(y, y′)p(y)p(y′). Combining several

bounds we have the following theorem:

Theorem 4 Assume that we have n sets of observa-
tions Xi of size mi, each of which drawn from distri-
butions with probabilities πiy of observing data with
label y. Moreover, assume that k((x, y), (x′, y′)) =
k(x, x′)k(y, y′) ≥ 0 where k(x, x) ≤ 1 and k(y, y) ≤ 1.
Finally, assume that m = |X|. In this case the mean
operator µXY can be estimated by µ̂XY with probability
at least 1− δ with precision

‖µXY − µ̂XY ‖ ≤
[
2 +

√
log((n+ 1)/δ)

]
×[

m−
1
2 +

[∑
i,j

m
− 1

2
i m

− 1
2

j

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

] 1
2
]

Proof We begin our argument by noting that both
for φ(x, y) and for ψ(x) the corresponding Rademacher
averages Rm for functions of RKHS norm bounded by
1 is bounded by m−

1
2 . This is a consequence of all

kernels being bounded by 1 in Theorem 3 and k ≥ 0.

Next note that in Theorem 2 we may set R = 1, since
for ‖f‖ ≤ 1 and k((x, y), (x, y)) ≤ 1 and k(x, x) ≤ 1
it follows from the Cauchy Schwartz inequality that
|f(x)| ≤ 1. Solving δ ≤ exp−mε2 for ε yields ε ≤
m−

1
2

[
2 +

√
log (1/δ)

]
.

Finally, note that we have n + 1 deviations which
we need to bound: one between µXY and µxy,
and n for each of the ε[i] respectively. Dividing
the failure probability δ into n + 1 cases yields
bounds of the form m−

1
2

[
2 +

√
log ((n+ 1)/δ)

]
and

m
− 1

2
i

[
2 +

√
log ((n+ 1)/δ)

]
respectively. Plugging all

error terms into (18) and summing over terms yields
the claim and substituting this back into the triangle
inequality proves the claim.

Binary Classification Next we consider the special
case of binary classification where X2 = X. Using (11)
we see that the corresponding estimator is given by

µ̂XY = 2ρµset
X [1]− µset

X [2]. (19)

Since µ̂XY shares a significant fraction of terms with
µXY we are able to obtain tighter bounds as follows:

Theorem 5 With probability 1 − δ (for 1 > δ > 0)
the following bound holds:

‖µ̂XY − µXY ‖ ≤ 2ρ
[
2 +

√
log(2/δ)

] [
m
− 1

2
1 +m

− 1
2

+

]
m+ is the number of observations with y = 1 in X2.

Proof Denote by µ[X+] and µ[X−] the averages over
the subsets of X2 with positive and negative labels
respectively. By construction we have that

µXY = ρµ[X+]− (1− ρ)µ[X−]

µ̂XY = 2ρµset
X [1]− ρµ[X+]− (1− ρ)µ[X−]

Taking the difference yields 2ρ [µset
X [1]− µ[X+]]. To

prove the claim note that we may use Theo-
rem 2 both for

∥∥µset
X [1]−Ex∼p(x|y=1)[ψ(x)]

∥∥ and
for

∥∥µ[X+]−Ex∼p(x|y=1)[ψ(x)]
∥∥. Taking the union

bound and summing over terms proves the claim.

The bounds we provided show that µ̂XY converges at
the same rate to µxy as µXY does, assuming that the
sizes of the sets Xi increase at the same rate as X.

3.3 Stability Bounds

To complete our reasoning we need to show that those
bounds translate in guarantees in terms of the mini-
mizer of the log-posterior. In other words, estimates
using the correct mean µXY vs. its estimate µ̂XY do
not differ by a significant amount. For this purpose we
make use of (Altun & Smola, 2006, Lemma 17).

Lemma 6 Denote by f a convex function on H and
let µ, µ̂ ∈ H. Moreover let λ > 0. Finally denote by
θ∗,∈ H the minimizer of

L(θ, µ) := f(θ)− 〈µ, θ〉+ λ ‖θ‖2 (20)

with respect to θ and θ̂∗ the minimizer of L(θ̂, µ̂) re-
spectively. In this case the following inequality holds:∥∥θ∗ − θ̂∗∥∥ ≤ λ−1 ‖µ− µ̂‖ . (21)

This means that a good estimate for µ immediately
translates into a good estimate for the minimizer of the
approximate log-posterior. This leads to the following
bound on the risk minimizer.
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Corollary 7 The deviation between θ∗, as defined in
(4) and θ̂∗, the minimizer of the approximate log-
posterior using µ̂XY rather than µXY , is bounded by
O(m−

1
2 +

∑
im
− 1

2
i ).

Finally, we may use (Altun & Smola, 2006, Theorem
16) to obtain bounds on the quality of θ̂∗ when con-
sidering how well it minimizes the true negative log-
posterior. Using the bound

L(θ̂∗, µ)− L(θ∗, µ) ≤
∥∥θ̂∗ − θ∗∥∥ ‖µ̂− µ‖ (22)

yields the following bound for the log-posterior:

Corollary 8 The minimizer θ̂∗ of the approximate
log-posterior using µ̂XY rather than µXY incurs a
penalty of at most λ−1 ‖µ̂XY − µXY ‖2.

4 Extensions

Note that our analysis so far focused on a specific set-
ting, namely maximum-a-posteriori analysis in expo-
nential families. While this is a common and popular
setting, the derivations are by no means restricted to
this. We have the entire class of (conditional) models
described by Altun & Smola (2006); Dud́ık & Schapire
(2006) at our disposition. They are characterized via

minimize
p

−H(p) subject to ‖Ez∼p [φ(z)]− µ‖ ≤ ε

Here p is a distribution, H is an entropy-like quantity
defined on the space of distributions, and φ(z) is some
evaluation map into a Banach space. This means that
the optimization problem can be viewed as an approxi-
mate maximum entropy estimation problem, where we
do not enforce exact moment matching of µ but rather
allow ε slack. In both Altun & Smola (2006) and Dud́ık
& Schapire (2006) the emphasis lay on unconditional
density models: the dual of the above optimization
problem. In particular, it follows that for H being
the Shannon-Boltzmann entropy, the dual optimiza-
tion problem is the maximum a posteriori estimation
problem, which is what we are solving here.

In the conditional case, p denotes the collection of
probabilities p(y|xi) and the operator Ez∼p [φ(z)] =
1
m

∑m
i=1 Ey|p(y|xi) [φ(xi, y)] is the conditional expec-

tation operator on the set of observations. Finally,
µ = 1

m

∑m
i=1 φ(xi, yi), that is, it describes the empiri-

cal observations. We have two design parameters:

Function Space: Depending on which Banach Space
norm we may choose to measure the deviation between
µ and its expectation with respect to p in terms of e.g.
the `2 norm, the `1 norm or the `∞ norm. The latter
would lead to sparse coding and convex combinations.

Entropy and Regularity: Depending on the choice
of entropy and divergence functionals we obtain a
range of diverse estimators. For instance, if we were
to choose the unnormalized entropy instead of the en-
tropy, we would obtain AdaBoost style problems. We
may also use Csiszar and Bregmann divergences.

The key point is that our reasoning of estimating µXY
based on an aggregate of samples with unknown la-
bels but known label proportions is still applicable.
This means that it should be possible to design boost-
ing algorithms and sparse coding methods which could
operate on similarly restricted sets of observations.

5 Related Work and Alternatives

Transduction Gärtner et al. (2006) and Mann & Mc-
Callum (2007) performed transduction by enforcing a
proportionality constraint on the unlabeled data via a
Gaussian Process model. At first glance these methods
might seem applicable for our problem but as stated
in Section 1, they do require that we have at least
some labeled instances of all classes at our disposition
which need to be drawn in an unbiased fashion. This
is clearly not the case in our setting.

Self consistent proportions Kück & de Freitas
(2005) introduced a more informative variant of the
binary multiple-instance learning, in which groups of
instances are given along with estimates of the fraction
of positively-labeled instances per group. This is then
used to design a hierarchical probabilistic model which
will generate consistent fractions. The optimization is
solved via a MCMC sampler. While only described for
a binary problem it could be easily extended to multi-
class settings. Chen et al. (2006) and Musicant et al.
(2007) use a similar approach with similar drawbacks,
since we typically only have as many sets as classes.

Conditional Probabilities A seemingly valid alter-
native approach is to try building a classifier for p(i|x)
and subsequently recalibrating the probabilities to ob-
tain p(y|x). At first sight this may appear promising
since this method is easily applicable in conjunction
with most discriminative methods. The idea would be
to reconstruct p(y|x) by

p(y|x) =
∑
i

πiyp(i|x). (23)

However, this is not a useful estimator in our setting
for a simple reason: it assumes the conditional inde-
pendence y ⊥⊥ x | i, which obviously does not hold.

A simple example illustrates the problem. Assume
that X,Y = {1, 2} and that p(y = 1|x = 1) = p(y =
2|x = 2) = 1. In other words, the estimation problem
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is solvable since the classes are well separated. More-
over, assume that π is given by

π =
[

0.5− ε 0.5 + ε
0.5 0.5

]
for 0 < ε� 1.

Here, p(i|x) is useless for estimating p(y|x), since we
will only exceed random guessing by at most ε.

Reduction to Binary For binary classification and
real-valued classification scores we may resort to yet
another fairly straightforward method: build a classi-
fier which is able to distinguish between the sets X1

and X2 and subsequently threshold labels such that
the appropriate fraction of observations in X1 and
X2 respectively has its proper labels. Unfortunately,
multi-class variants of this reduction are nontrivial and
experiments show that even for the binary case this
method is inferior to our approach.

Density Estimation Finally, one way of obtaining
the probabilities p(x, y|i) is to perform density estima-
tion for each set of observations Xi. Subsequently we
may use

p(x|y) =
∑
i

[
π−1

]
yi
p(x, y|i) (24)

to re-calibrate the probability estimates. Bayes’ theo-
rem is finally invoked to compute posterior probabili-
ties. This tends to fail for high-dimensional data due
to the curse of dimensionality in density estimation.

6 Experiments

Datasets: We used binary and three-class classi-
fication datasets from the UCI repository2 and the
LibSVM site.3 Whenever separate training, validation
and testing sets were available, we merged all of them
prior to performing nested 10-fold cross-validation.
We limited ourselves to three classes, since we need
to generate as many splits as we have classes.

For the binary datasets we used half of the data for X1

and the remainder for X2. Moreover, we removed all
instances of class 2 from X1. That is, the conditional
class probabilities in X2 match those from the reposi-
tory, whereas in X1 their counterparts were deleted.

For the three-class datasets (protein, dna, senseit) we
investigated two different partitions. In scenario A we
used class 1 exclusively in X1, class 2 exclusively in
X2, and a mix of all three classes weighted by (0.5 ·
p(1), 0.7 ·p(2), 0.8 ·p(3)) to generate X3. In scenario B

2http://archive.ics.uci.edu/ml/
3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

we used the following splits c1 · 0.4 · p(1) c1 · 0.15 · p(2) c1 · 0.14 · p(3)
c2 · 0.1 · p(1) c2 · 0.15 · p(2) c2 · 0.06 · p(3)
c3 · 0.5 · p(1) c3 · 0.7 · p(2) c3 · 0.8 · p(3)


Here the constants c1, c2 and c3 are chosen such that
the probabilities are properly normalized. As before,
X3 contained half of the data.

Model Selection: As stated, we perform nested
10-fold cross-validation. That is, we perform 10-fold
cross-validation to assess the performance of the esti-
mators. Within each fold, we perform 10-fold cross-
validation to find a suitable value for the parameters.

For supervised classification, i.e. for discriminative
sorting, such a procedure is quite straightforward,
since we may directly optimize for classification er-
ror. For kernel density estimation, we used the log-
likelihood as our criterion.

Due to the high number of hyper-parameters (at least
8) in MCMC it would be very difficult to perform
nested 10-fold crossvalidation. Instead, we choose the
best parameters from a simple 10-fold crossvalidation
run. In other words, we are giving the MCMC method
an unfair advantage over our approach by effectively
reporting the best performance during the model se-
lection procedure.

Finally, for the re-calibrated sufficient statistics µ̂XY
we use the estimate of the log-likelihood on the valida-
tion set as the criterion for cross-validation, since no
other quantity, such as classification errors is readily
available for estimation.

Algorithms: For discriminative sorting we used
an SVM with a Gaussian kernel. Its width was set
to the median between pairs of observations, as sug-
gested in (Schölkopf, 1997). Moreover, we chose the
regularization parameter by cross-validation. For our
re-calibrated sufficient statistics approach we adopted
the same strategy. For kernel density estimation we
used Gaussian kernels with diagonal densities. Cross-
validation was performed over the kernel width. For
MCMC 10 000 samples were generated after a burn in
period of 10 000 steps (Kück & de Freitas (2005)).

Optimization: Bundle methods (Smola et al., 2007)
are used for solving the regularized risk minimization
problem in Algorithm 1. It performs successive Taylor
approximations of the conditional log-likelihood and
optimizes over these lower bounds. For our regular-
ized log-likelihood problem, the solver converges to ε
precision in O(log ε) steps.

Results The results of binary and multiclass classifi-
cation are summarized in Table 3. Our method clearly
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beats kernel density estimation and performs favorably
in comparison to discriminative sorting. Note that
in terms of computation, our approach is somewhat
cheaper to implement, since it effectively only needs
to deal with a smaller sample size (only X rather than
the union of all datasets Xi). The training time for our
method is less than two minutes for all of the datasets,
whereas for MCMC on average it takes 15 minutes and
this may be even much longer whenever the number
of active kernels and/or observations are high. How-
ever, for large number of partitions n, the approach
described in the MCMC procedure might potentially
have an edge over our method since at present we do
not take full advantage of this setting. We believe,
however, that this could be achieved easily by optimiz-
ing the condition number of the pseudoinverse of the
then redundant linear system of equations. Note that
kernel density estimation fails on two datasets due to
numerical problems related to too high dimensionality.

On multiclass datasets we observe the same property.
As described in Section 3.2, the quality of our mini-
mizer of the log-posterior will depend on the mixing
matrix and this is noticeable in the reduction of per-
formance for the dense mixing matrix (scenario B) in
comparison to the better conditioned sparse mixing
matrix (scenario A). In other words, for ill conditioned
π even our method has its limits, due simply to numer-
ical considerations of effective sample size.

7 Conclusion

In this paper we showed a rather surprising result,
namely that it is possible to consistently reconstruct
the labels of a dataset if we only have, in addition to
the observations, information about the proportions of
occurrence of each class (in at least as many data ag-
gregates as there are classes). In particular, we prove
that up to constants, our algorithm enjoys the same
rates of convergence afforded to methods which have
full access to all label information.

This has beneficial applications in a range of appli-
cations like e-commerce, spam filtering and improper
content detection. It may also suggest that techniques
used to anonymize observations, in particular for de-
mographic data, may not be really safe. (At least when
it is possible to estimate the missing information in
principle, provided enough data.) Experiments show
that our approach is eminently feasible and performs
favorably when compared to related methods.
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Table 3. Classification error on the UCI/LibSVM database

Errors are reported in % with standard error. (%) ± SE. The best
result and those results not significantly worse than it, are high-
lighted in boldface. We used a one-sided paired Welch t-test with
95% confidence level as reference.

MM: Mean Map, i.e. our method of re-estimating the sufficient statis-
tics; KDE: Kernel Density Estimation; DS: Discriminative Sorting.
This is only applicable for binary classification. MCMC: A sampling
based hierarchical probabilistic model. BA: Baseline, i.e. the baseline
obtained by predicting the majority class. †: The program did not
complete, since the dimensionality was too high (only KDE). −: not
applicable (only DS for multicategory problems). ‡: Algorithm as
implemented does not scale to large datasets (only MCMC).

Data MM KDE DS MCMC BA
iono 18.4±3.2 17.5±3.2 12.2±2.6 18.0±2.1 35.8
iris 10.0±3.6 16.8±3.4 15.4±1.1 21.1±3.6 29.9
optd 1.8±0.5 0.7±0.4 9.8±1.2 2.0±0.4 49.1
page 3.8±2.3 7.1±2.8 18.5±5.6 5.4±2.8 43.9
pima 27.5±3.0 34.8±0.6 34.4±1.7 23.8±1.8 34.8
tic 31.0±1.5 34.6±0.5 26.1±1.5 31.3±2.5 34.6
yeast 9.3±1.5 6.5±1.3 25.6±3.6 10.4±1.9 39.9
wine 7.4±3.0 12.1±4.4 18.8±6.4 8.7±2.9 40.3
wdbc 7.8±1.3 5.9±1.2 10.1±2.1 15.5±1.3 37.2
sonar 24.2±3.5 35.2±3.5 31.4±4.0 39.8±2.8 44.5
heart 30.0±4.0 38.1±3.8 28.4±2.8 33.7±4.7 44.9
brea 5.3±0.8 14.2±1.6 3.5±1.3 4.8±2.0 34.5
aust 17.0±1.7 33.8±2.5 15.8±2.9 30.8±1.8 44.4
svm3 20.4±0.9 27.2±1.3 25.5±1.5 24.2±0.8 23.7
adult 18.9±1.2 24.5±1.3 22.1±1.4 18.7±1.2 24.6
cleve 19.1±3.6 35.9±4.5 23.4±2.9 24.3±3.1 22.7
derm 4.9±1.4 27.4±2.6 4.7±1.9 14.2±2.8 30.5
musk 25.1±2.3 28.7±2.6 22.2±1.8 19.6±2.8 43.5
ger 32.4±1.8 41.6±2.9 37.6±1.9 32.0±0.6 32.0
cove 37.1±2.5 41.9±1.7 32.4±1.8 41.1±2.2 45.9
spli 25.2±2.0 35.5±1.5 26.6±1.7 28.8±1.6 48.4
giss 10.3±0.9 † 12.2±0.8 50.0±0.0 50.0
made 44.1±1.5 † 46.0±2.0 49.6±0.2 50.0
cmc 37.5±1.4 43.8±0.7 45.1±2.3 46.9±2.6 49.9
bupa 48.5±2.9 50.8±5.1 40.3±4.9 50.4±0.8 49.7

protA 44.6±0.3 60.2±0.1 - 65.3±1.9 61.2
protB 45.7±0.6 61.2±0.0 - 67.7±1.8 61.2
dnaA 16.6±1.0 30.7±0.8 - 37.7±0.8 40.5
dnaB 29.1±1.0 33.0±0.7 - 40.5±0.0 40.5
sensA 19.8±0.1 43.1±0.0 - ‡ 43.2
sensB 21.0±0.1 43.1±0.0 - ‡ 43.2


