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Abstract

Consider the following problem: given sets of
unlabeled observations, each set with known
label proportions, predict the labels of an-
other set of observations, also with known
label proportions. This problem appears in
areas like e-commerce, spam filtering and im-
proper content detection. We present con-
sistent estimators which can reconstruct the
correct labels with high probability in a uni-
form convergence sense. Experiments show
that our method works well in practice.

1 Introduction

Assume that a web services company wants to increase
its profit in sales. Obviously sending out discount
coupons will increase sales, but sending coupons to
customers who would have purchased the goods any-
way decreases the margins. Alternatively, failing to
send coupons to customers who would only buy in case
of a discount reduces overall sales. We would like to
identify the class of would-be customers who are most
likely to change their purchase decision when receiv-
ing a coupon. The problem is that there is no direct
access to a sample of would-be customers. Typically
only a sample of people who buy regardless of coupons
(those who bought when there was no discount) and a
mixed sample (those who bought when there was dis-
count) are available. The mixing proportions can be
reliably estimated using random assignment to control
and treatment groups. How can we use this informa-
tion to determine the would-be customers?

Likewise, consider the problem of spam filtering.
Datasets of spam are likely to contain almost pure
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spam (this is achieved e.g. by listing e-mails as spam
bait), while user’s inboxes typically contain a mix of
spam and non-spam. We would like to use the inbox
data to improve estimation of spam. In many cases
it is possible to estimate the proportions of spam and
non-spam in a user’s inbox much more cheaply than
the actual labels. We would like to use this informa-
tion to categorize e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with
“improper content”. Datasets of such images are read-
ily accessible thanks to user feedback, and it is rea-
sonable to assume that this labeling is highly reliable.
However the rest of images on the web (those not la-
beled) is a far larger dataset, albeit without labels (af-
ter all, this is what we would like to estimate the labels
for). That said, it is considerably cheapter to obtain
a good estimate of the proportions of proper and im-
proper content in addition to having one dataset of
images being of likely improper content. We would
like to obtain a classifier based on this information.

In this paper we present a method to estimate labels
directly in such situations, assuming that only label
proportions be known. In the above examples, this
would be helpful in identifying potential customers,
spam e-mails and improper images. We prove bounds
indicating that the estimates obtained are close to
those from a fully labeled scenario. The formal setting
though is more general than the above examples might
suggest: we do not require any label to be known, only
their proportions within each of the involved datasets.
Also we are not restricted to the binary case but in-
stead can deal with large numbers of classes.

Problem Formulation Assume that we have n sets
of observations X; = {«%,... 2%, } of respective sam-
ple sizes m; (our calibration set) as well as a set
X = {z1,...,2m} (our test set). Moreover, assume
that we know the fractions m;, of patterns of labels
y €Y (|Y] < n) contained in each set X; and assume
that we also know the marginal probability p(y) of the
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Table 1. Notation Conventions

X i*" set of observations: X; = {i,...,2},,}
m; number of observations in X

X test set of observations: X = {z1,...,Zm}
Y test set of labels: Y = {y1,...,ym}

m number of observations in the test set X
Tiy proportion of label y in set ¢

¢(xz,y) map from (x,y) to a Hilbert Space

Table 2. Major quantities of interest in the paper

Numbers on the left represent the order in which the cor-
responding quantity is computed in the algorithm (let-
ters denote the variant of the algorithm: ‘a’ for general
feature map ¢(z,y) and ‘b’ for factorizing feature map
o(z,y) = Y(x)®p(y)). Lowercase subscripts refer to model
expectations, uppercase subscripts are sample averages.

Expectations with respect to the model:

My = E(z,y)wp(z,y) [¢(x7 y)]
u;““i[y, Y] = E@)mpteln [9(2,9)]
10y = Bayapaln [0(2, y)]
uilasst[y] = E(@)~p(aly) [¥(@)]
1l = Egymp(als [(2)]

Expectations with respect to data:

uxy = L ZL 1¢($z:yz)

(la)  pxX'liy] = Zlex ¢(z,y’) (known)
(1b) = Y. ¥(@) (known)
Estimates:

(2) ﬂ;lass — (ﬂ,Tﬂ_) IWTMset

(3a) fxy =2 ,ey PWAS [y, y]

(3b) ixy = ,ey PW)e(y) ® A5 [y)
(4) 6*  solution of (5) for pxy = fixy.

test set X.! It is our goal to design algorithms which
are able to obtain conditional class probability esti-
mates p(y|x) solely based on this information. As an
illustration, take the spam filtering example. We have
X1 = “mail in spam box” (only spam) and X5 = “mail
in inbox” (spam mixed with non-spam). The test set
X then may be X5 itself, for example. The goal is to
find p(spam|mail) in X5. Note that (for general m;,)
this is more difficult than transduction, where we have
at least one dataset with actual labels plus an unla-
beled test set where we might have an estimate as to
what the relative fractions of class labels might be.

2 Mean Operators

Our idea relies on uniform convergence properties of
the expectation operator and of corresponding risk
functionals (Altun & Smola, 2006). In doing so, we
are able to design estimators with the same perfor-
mance guarantees in terms of uniform convergence as
those with full access to the label information.

Label dictionaries Y; do not need to be the same across
all sets i: define Y := U; Y; and allow for m;; = 0 as needed.

2.1 Exponential Families

Denote by X the space of observations and let Y be the
space of labels. Moreover, let ¢(z,y) : X xY — H be a
feature map into a Reproducing Kernel Hilbert Space
(RKHS) H with kernel k((x,y), (z/,y’)). In this case

we may state conditional exponential models via

pylz,0) = exp ((¢(z, y) 9) —9(0lz)) with (1)
g(0|z) =log Z exp ( y),0), (2)

y€eY

where the normalization g is called the log-partition
function. For {(x;,y;)} drawn iid from a distribution

p(x,y) on X x Y the conditional log-likelihood is

m

logp(Y|X,0) Z

=1

=m (uxy,0) - ZQ(HIJ%)

—g(0lz:)]  (3)

Il? y’L

where pxy is defined as in Table 2. In order to avoid
overfitting one commonly maximizes the log-likelihood
penalized by a prior p(#). This means that we need to
solve the following optimization problem

0" := argmin [— log p(Y| X, 0)p(6)] . (4)
0
For instance, for a Gaussian prior on 0, i.e. for
—log p(6) = X ||0]|* + const. we have

0% = arg;nin Zg(9|$i) —m (uxy,0) + X0]*| .(5)

i=1

The problem is that in our setting we do not know
the labels y;, so the sufficient statistics pxy cannot
be computed exactly. The only place where the labels
enter the estimation process is via the mean pxy. Our
strategy is to exploit the fact that this quantity, how-
ever, is statistically well behaved and converges under
relatively mild technical conditions at rate O(m™2) to
its expected value (see Theorem 2)

Hazy = E(z,y)wp(z,y) [(ﬁ(l‘, y)] (6)

Our goal therefore will be to estimate ., and use it as
a proxy for pxy, and only then solve (5) with the es-
timated fixy instead of pxy. We will discuss explicit
convergence guarantees in Section 3 after describing
how to compute the mean operator in detail.

2.2 Estimating the Mean Operator

In order to obtain 6* we would need pxy, which is
impossible to compute exactly, since we do not have
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Y. However, we know that pxy and pg, are close.
Hence, if we are able to approximate (i, this, in turn,
will be a good estimate for pxy.

Our quest is therefore as follows: express ., as a
linear combination over expectations with respect to
the distributions on the datasets Xi,...,X,, (where
n > |Y]). Secondly, show that the expectations of the
distributions having generated the sets X; (uSe'[i, '],
see Table 2) can be approximated by empirical means
(u5'[i, y'], also see Table 2). Finally, we need to com-

bine both steps to provide guarantees for pxy .

It will turn out that in certain cases some of the al-
gebra can be sidestepped, in particular whenever we
may be able to identify several sets with each other
(e.g. the test set X is one of the training datasets X;)
or whenever ¢(x,y) factorizes into ¥ (z) ® p(y).

Mean Operator: Since i, is a linear operator map-
ping p(z,y) into a Hilbert Space we may expand fig,

= Zp(y)Emwp(m|y Zp Class ]

yeY yeY

where the shorthand ;S'%%[y, y] is defined in Table 2
This means that if we were able to compute p2%[y, y]
we would be able to “reassemble” p, from its indi-
vidual components. We now show that p%[y, y] can
be estimated directly.

Key to our assumptions is that p(z|y,i) = p(z|y). In
other words, we assume that the conditional distribu-
tion of x is independent of the index i, as long as we
know the label y. This yields the following;:

= p(aly)miy. (7)
y
This allows us define the following means

Z ﬂ_ZyMClabb ]

Note that in order to compute p5°t[i, y'] we do not need
any label information with respect to p(x|i). However,
since we have at least |Y| of those equations and we
assumed that 7 has full rank, they allow us to solve
a linear system of equations and compute pa[y, y]
from p2°[i, 3] for all i. That is, we may use

set [

1 (1, Y'] = Bap(ali) |6

set [

)U’iEt _ 'uclass classi( T ) 1__T  set (8)

and hence p TOm) T

class [

to compute pS?®S[y,y] for all y € Y. Whenever
7 € R™" is invertible (8) reduces to puc'ass = 7= 1yset.
With some slight abuse of notation we have p'2%s and
uset represent the matrices of terms pS®3[y,y’] and

pEi, y'] respectively.

Algorithm 1
Input datasets X, {X;}, probabilities m;,, and p(y)
fori=1tonandy €Y do
Compute empirical means 5
end for
Compute Mclass _ (7TT7T)71 T,usggt

Compute fixy = 3, cy P(y) 5[y, y]
Solve the minimization problem

set [

Y]

o* = arg;nin Zg(alxi) —m{iixy,0) + 10|
i—1

Return 6*.

Obviously we cannot compute pSet[i,y'] explicitly,

since we only have samples from p(z|i). However the
same convergence results governing the convergence of
pxy to figzy also hold for the convergence of p5* i, /]
to uset[i,y']. Hence we may use the empirical average
wiSt[i, y'] as the estimate for pS°[i,y’] and from that

find an estimate for pxy (see Algorithm 1).
2.3 Special Cases

In some cases the calculations described in Algorithm 1
can be carried out more efficiently.

Minimal number of sets, i.e. |Y| = n: Provided
that 7 has full rank, (7' 7)~!7" = 7=, This means

that the inverse can be computed more directly.

Testing on one of the calibration sets, i.e. X =
X;: This means that X is one of the training sets.
We only need one less set of observations. This is
particularly useful for factorizing feature maps.

Special feature map ¢(z,y) = ¥(x) ® p(y): In this
case the calculations of aS%[y,y'] and ps¢t[i,y'] are
greatly simplified, since we may pull the dependency
on y out of the expectations. Defining pcas[y], uset[i],
and p5¢'[i] as in Table 2 allows us to simplify

fxy = ZP ) ® A5 [y] (9)
yeY
where MCldbh _ (7TT7T) 1 Tuset (10)

A significant advantage of (10) is that we only need
to perform O(n) averaging operations rather than
O(n-|Y]). Obviously the cost of computing (7 "7) 7"
remains unchanged but the latter is negligible in com-
parison to the operations in Hilbert Space.

Binary classification: One may show that the fea-
ture map ¢(x, y) takes on a particularly appealing form
of ¢(x,y) = yy(z) where y € {£1}. This follows since
we can always re-calibrate (¢(z,y),0) by an offset in-
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dependent of y such that ¢(x,1) + ¢(x,—1) = 0.

If we moreover assume that X; only contains class 1
and X9 = X contains a mixture of classes with labels
1 and —1 with proportions p(1) =: pand p(—1) = 1—p
respectively, we obtain the mixing matrix

= =| - 1
p 1-p =
Plugging this into (10) and the result in (9) yields

iy = pu 1) = (1= p) [ 21 + Tpns 2]
= 2pu%"[1] — X" [2]. (11)

Consequently taking a simple weighted difference be-
tween the averages on two sets, e.g. one set containing
spam whereas the other one containing an unlabeled
mix of spam and non-spam allows one to obtain the
sufficient statistics needed for estimation.

3 Convergence Bounds

The obvious question is how well [ixy manages to ap-
proximate pxy and secondly, how badly any error in
estimating pxy would affect the overall quality of the
solution. We approach this problem as follows: first we
state the uniform convergence properties of uxy and
similar empirical operators relative to figy. Secondly,
we apply those bounds to the cases discussed above,
and thirdly, we show that the approximate minimizer
of the log-posterior has a bounded deviation from what
we would have obtained by knowing pxy exactly.

3.1 Uniform Convergence for Mean Operators

In order to introduce the key result we need to intro-
duce Rademacher averages:

Definition 1 (Rademacher Averages) Let X be a
domain and p a distribution on X and assume that
X :={x1,...,2xm} is drawn iid from p. Moreover, let
F be a class of functions X — R. Furthermore denote
by o; Rademacher random variables, i.e. {£1} valued
with zero mean. The Rademacher average is

m(?7p) = EXEO‘ SUP Zalf xz

] . (12)

This quantity measures the flexibility of the function
class F — in our case linear functions in ¢(z, y).

Theorem 2 (Convergence of Empirical Means)
Denote by ¢ : X — B a map into a Banach space
B, denote by B* its dual space and let F the class of
linear functions on B with bounded B* norm by 1.

Let R > 0 such that for all f € F we have |f(x)| < R.

Moreover, assume that X is an m-sample drawn from

p on X. For € > 0 we have that with probability at

least 1 — exp(—e>m/2R?) the following holds:

lnx = pallg < 2Rm(F,p) +€ (13)
For k > 0 we only have a failure probability of 1 —
exp(—e2m/R?).

Theorem 3 (Bartlett & Mendelson (2002))
Whenever B is a Reproducing Kernel Hilbert Space

with kernel k(x,z’) the Rademacher average can be
1

bounded from above by Ry, (F) < m™2 [Ew[k(x,x)]]%

Our approximation error can be bounded as follows.
From the triangle inequality we have:

liaxy — pxyll < llaxy — payll + |pay — 1xvll -

For the second term we may employ Theorem 2 di-
rectly. To bound the first term note that by linearity

Zp 17rTé]y’y (14)

where we define the matrix of coefficients

€=U — Hzy =

eliy'] = wliy'] = uX'lis ). (15)
Now note that all €[i, y'] also satisfy the conditions of
Theorem 2 since the sets X; are drawn iid from the
distributions p(x|é) respectively. We may bound each
term individually in this fashion and subsequently ap-
ply the union bound to ensure that all n - Y| com-
ponents satisfy the constraints. Hence each of the
terms needs to satisfy the constraint with probability
1—4/(n]Y]) to obtain an overall bound with probabil-
ity 1 — 4. To obtain bounds we would need to bound
the linear operator mapping € into e.

3.2 Special Cases

A closed form solution in the general case is not par-
ticularly useful. However, we give an explicit analy-
sis for two special cases: firstly the situation where
d(x,y) = ¥(z) ® ¢(y) and secondly, the binary clas-
sification setting where ¢(z,y) = y¢(z) and X; = X,
where much tighter bounds are available.

Special feature map We only need to deal with n

rather than with n x |Y| empirical estimates, i.e. 5[]
set

vs. p'[i,y']. Hence (14) and (15) specialize to

€= Zp(y) d_vwerTmTaT] di (16)
éfi] = /i?ft[ | — 1" ld). (17)
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Assume that with high probability each €[i] satisfies
l€[z]]| < ¢; (we will deal with the explicit constants ¢;
later). Moreover, assume for simplicity that Y| = n
and that 7 has full rank (otherwise we need to follow
through on our expansion using (7TT7T)_17TT instead of
7~ 1). This implies that

> (el elil) x

2
el

> pwp@ k) [+, [+,
Z CiCj

where K"V = k(y,y")p(y)p(y’). Combining several
bounds we have the following theorem:

[Wﬁl]—r KYyPp—1

IN

(18)

ij

Theorem 4 Assume that we have n sets of observa-
tions X; of size m;, each of which drawn from distri-
butions with probabilities m;, of observing data with
label y. Moreover, assume that k((z,y),(z',y")) =
k(z,z")k(y,y') > 0 where k(z,z) <1 and k(y,y) < 1.
Finally, assume that m = |X|. In this case the mean
operator pxy can be estimated by fixy with probability
at least 1 — § with precision

lxy = x| < |2+ vlog((n + 1)/8)] x
e+ (S J

Proof We begin our argument by noting that both
for ¢(z,y) and for ¢(x) the corresponding Rademacher
averages R,, for functions of RKHS norm bounded by
1 is bounded by m~z. This is a consequence of all
kernels being bounded by 1 in Theorem 3 and k£ > 0.

Nl=

[x] " Kvrat

Next note that in Theorem 2 we may set R = 1, since
for [|f]| <1 and k((z,y), (z,y)) < 1 and k(z,z) <1
it follows from the Cauchy Schwartz inequality that
|f(z)] < 1. Solving § < exp—me? for € yields e <

-t 2+ Viog (179)]

Finally, note that we have n + 1 deviations which
we need to bound: one between uxy and figy,
and n for each of the e[i] respectively. Dividing
the failure probability § into n + 1 cases yields

bounds of the form m~2 [2 + 5)} and

1
m;* [24 Viog (n+ 1)/9)
error terms into (18) and summing over terms yields
the claim and substituting this back into the triangle
inequality proves the claim. |

log (n+1)/
} respectively. Plugging all

Binary Classification Next we consider the special
case of binary classification where X3 = X. Using (11)
we see that the corresponding estimator is given by

fixy = 2pp%" 1] — p5"[2]. (19)

Since ixy shares a significant fraction of terms with
wxy we are able to obtain tighter bounds as follows:

Theorem 5 With probability 1 — 6 (for 1 > § > 0)
the following bound holds:

lixy — pxvll < 2p {2 + \/W] [ml—é n m;%]

my is the number of observations with y =1 in Xs.

Proof Denote by pu[X ] and u[X_] the averages over
the subsets of Xs with positive and negative labels
respectively. By construction we have that

pxy = pul[Xi] — (1= p)pu[X_]
fixy = 2ppX[1] — pp[X 4] = (1 — p)p[X ]

Taking the difference yields 2p [p5¢*[1] — p[X+]]. To
prove the claim note that we may use Theo-
rem 2 both for ||uSE*[1] = Epmp(ajy=1)[¥(x)]|| and
for ||pu[X+] = Epup(aiy=1)[¥(2)]||. Taking the union

bound and summing over terms proves the claim. W

The bounds we provided show that fixy converges at
the same rate to jizy as pxy does, assuming that the
sizes of the sets X; increase at the same rate as X.

3.3 Stability Bounds

To complete our reasoning we need to show that those
bounds translate in guarantees in terms of the mini-
mizer of the log-posterior. In other words, estimates
using the correct mean pxy vs. its estimate fixy do
not differ by a significant amount. For this purpose we
make use of (Altun & Smola, 2006, Lemma 17).

Lemma 6 Denote by f a convex function on H and
let pu, i € H. Moreover let X > 0. Finally denote by
0%, € H the minimizer of

L(0, 1) = f(0) = (. 0) + A0 (20)

with respect to 6 and 6* the minimizer of L(é,ﬂ) re-
spectively. In this case the following inequality holds:

o — 8| < AVl — il (21)

This means that a good estimate for p immediately
translates into a good estimate for the minimizer of the
approximate log-posterior. This leads to the following
bound on the risk minimizer.
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Corollary 7 The deviation between 0%, as defined in
(4) and 0*, the minimizer of the approximate log-
posterior using fixy rather than pxy, is bounded by

O(m’% +Zimi_%),

Finally, we may use (Altun & Smola, 2006, Theorem
16) to obtain bounds on the quality of 6* when con-
sidering how well it minimizes the true negative log-
posterior. Using the bound

L%, 1) — L(0", ) < |

0* — 6

a—pl  (22)

yields the following bound for the log-posterior:

Corollary 8 The minimizer 6* of the approximate
log-posterior using fixy rather than pxy incurs a
penalty of at most A" || ixy — pxy |

4 Extensions

Note that our analysis so far focused on a specific set-
ting, namely maximum-a-posteriori analysis in expo-
nential families. While this is a common and popular
setting, the derivations are by no means restricted to
this. We have the entire class of (conditional) models
described by Altun & Smola (2006); Dudik & Schapire
(2006) at our disposition. They are characterized via

minimize —H (p) subject to ||E,, [¢(2)] — ul| <e
P

Here p is a distribution, H is an entropy-like quantity
defined on the space of distributions, and ¢(z) is some
evaluation map into a Banach space. This means that
the optimization problem can be viewed as an approxi-
mate maximum entropy estimation problem, where we
do not enforce exact moment matching of p but rather
allow e slack. In both Altun & Smola (2006) and Dudik
& Schapire (2006) the emphasis lay on unconditional
density models: the dual of the above optimization
problem. In particular, it follows that for H being
the Shannon-Boltzmann entropy, the dual optimiza-
tion problem is the maximum a posteriori estimation
problem, which is what we are solving here.

In the conditional case, p denotes the collection of
probabilities p(y|z;) and the operator E.., [¢(z)] =
%E:’;l Eyp(ylz,) [0(i,y)] is the conditional expec-
tation operator on the set of observations. Finally,
W= % St (x4, v:), that is, it describes the empiri-
cal observations. We have two design parameters:

Function Space: Depending on which Banach Space
norm we may choose to measure the deviation between
w and its expectation with respect to p in terms of e.g.
the ¢ norm, the ¢; norm or the ¢, norm. The latter
would lead to sparse coding and convex combinations.

Entropy and Regularity: Depending on the choice
of entropy and divergence functionals we obtain a
range of diverse estimators. For instance, if we were
to choose the unnormalized entropy instead of the en-
tropy, we would obtain AdaBoost style problems. We
may also use Csiszar and Bregmann divergences.

The key point is that our reasoning of estimating pxy
based on an aggregate of samples with unknown la-
bels but known label proportions is still applicable.
This means that it should be possible to design boost-
ing algorithms and sparse coding methods which could
operate on similarly restricted sets of observations.

5 Related Work and Alternatives

Transduction Gértner et al. (2006) and Mann & Mec-
Callum (2007) performed transduction by enforcing a
proportionality constraint on the unlabeled data via a
Gaussian Process model. At first glance these methods
might seem applicable for our problem but as stated
in Section 1, they do require that we have at least
some labeled instances of all classes at our disposition
which need to be drawn in an unbiased fashion. This
is clearly not the case in our setting.

Self consistent proportions Kiick & de Freitas
(2005) introduced a more informative variant of the
binary multiple-instance learning, in which groups of
instances are given along with estimates of the fraction
of positively-labeled instances per group. This is then
used to design a hierarchical probabilistic model which
will generate consistent fractions. The optimization is
solved via a MCMC sampler. While only described for
a binary problem it could be easily extended to multi-
class settings. Chen et al. (2006) and Musicant et al.
(2007) use a similar approach with similar drawbacks,
since we typically only have as many sets as classes.

Conditional Probabilities A seemingly valid alter-
native approach is to try building a classifier for p(i|x)
and subsequently recalibrating the probabilities to ob-
tain p(y|z). At first sight this may appear promising
since this method is easily applicable in conjunction
with most discriminative methods. The idea would be
to reconstruct p(y|x) by

pylz) = Z Tiyp(i|z). (23)

However, this is not a useful estimator in our setting
for a simple reason: it assumes the conditional inde-
pendence y Ul x | 4, which obviously does not hold.

A simple example illustrates the problem. Assume
that X,Y = {1,2} and that p(y = 1|z = 1) = p(y =
2|z = 2) = 1. In other words, the estimation problem
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is solvable since the classes are well separated. More-
over, assume that 7 is given by

1 05—€¢ 05+¢
=105 0.5 for 0 < ek 1.

Here, p(i|z) is useless for estimating p(y|x), since we
will only exceed random guessing by at most e.

Reduction to Binary For binary classification and
real-valued classification scores we may resort to yet
another fairly straightforward method: build a classi-
fier which is able to distinguish between the sets X3
and X, and subsequently threshold labels such that
the appropriate fraction of observations in X; and
X5 respectively has its proper labels. Unfortunately,
multi-class variants of this reduction are nontrivial and
experiments show that even for the binary case this
method is inferior to our approach.

Density Estimation Finally, one way of obtaining
the probabilities p(x, y|i) is to perform density estima-
tion for each set of observations X;. Subsequently we
may use

plzly) =[], plz.yli) (24)

%

to re-calibrate the probability estimates. Bayes’ theo-
rem is finally invoked to compute posterior probabili-
ties. This tends to fail for high-dimensional data due
to the curse of dimensionality in density estimation.

6 Experiments

Datasets:  We used binary and three-class classi-
fication datasets from the UCI repository? and the
LibSVM site.> Whenever separate training, validation
and testing sets were available, we merged all of them
prior to performing nested 10-fold cross-validation.
We limited ourselves to three classes, since we need
to generate as many splits as we have classes.

For the binary datasets we used half of the data for X3
and the remainder for X5. Moreover, we removed all
instances of class 2 from X;. That is, the conditional
class probabilities in X5 match those from the reposi-
tory, whereas in X; their counterparts were deleted.

For the three-class datasets (protein, dna, senseit) we
investigated two different partitions. In scenario A we
used class 1 exclusively in X7, class 2 exclusively in
Xo, and a mix of all three classes weighted by (0.5 -
p(1),0.7-p(2),0.8-p(3)) to generate X3. In scenario B

2http://archive.ics.uci.edu/ml/
Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

we used the following splits

¢1-04-p(1) ¢1-0.15-p(2) ¢1-0.14-p(3)
c2-0.1-p(1) ¢2-0.15-p(2) c¢2-0.06-p(3)
c3-05-p(1) ¢3-0.7-p(2) c3-0.8-p(3)

Here the constants c¢1,co and c3 are chosen such that
the probabilities are properly normalized. As before,
X3 contained half of the data.

Model Selection: As stated, we perform nested
10-fold cross-validation. That is, we perform 10-fold
cross-validation to assess the performance of the esti-
mators. Within each fold, we perform 10-fold cross-
validation to find a suitable value for the parameters.

For supervised classification, i.e. for discriminative
sorting, such a procedure is quite straightforward,
since we may directly optimize for classification er-
ror. For kernel density estimation, we used the log-
likelihood as our criterion.

Due to the high number of hyper-parameters (at least
8) in MCMC it would be very difficult to perform
nested 10-fold crossvalidation. Instead, we choose the
best parameters from a simple 10-fold crossvalidation
run. In other words, we are giving the MCMC method
an unfair advantage over our approach by effectively
reporting the best performance during the model se-
lection procedure.

Finally, for the re-calibrated sufficient statistics fixy
we use the estimate of the log-likelihood on the valida-
tion set as the criterion for cross-validation, since no
other quantity, such as classification errors is readily
available for estimation.

Algorithms: For discriminative sorting we used
an SVM with a Gaussian kernel. Its width was set
to the median between pairs of observations, as sug-
gested in (Scholkopf, 1997). Moreover, we chose the
regularization parameter by cross-validation. For our
re-calibrated sufficient statistics approach we adopted
the same strategy. For kernel density estimation we
used Gaussian kernels with diagonal densities. Cross-
validation was performed over the kernel width. For
MCMC 10000 samples were generated after a burn in
period of 10000 steps (Kiick & de Freitas (2005)).

Optimization: Bundle methods (Smola et al., 2007)
are used for solving the regularized risk minimization
problem in Algorithm 1. It performs successive Taylor
approximations of the conditional log-likelihood and
optimizes over these lower bounds. For our regular-
ized log-likelihood problem, the solver converges to e
precision in O(log€) steps.

Results The results of binary and multiclass classifi-
cation are summarized in Table 3. Our method clearly
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beats kernel density estimation and performs favorably
in comparison to discriminative sorting. Note that
in terms of computation, our approach is somewhat
cheaper to implement, since it effectively only needs
to deal with a smaller sample size (only X rather than
the union of all datasets X;). The training time for our
method is less than two minutes for all of the datasets,
whereas for MCMC on average it takes 15 minutes and
this may be even much longer whenever the number
of active kernels and/or observations are high. How-
ever, for large number of partitions n, the approach
described in the MCMC procedure might potentially
have an edge over our method since at present we do
not take full advantage of this setting. We believe,
however, that this could be achieved easily by optimiz-
ing the condition number of the pseudoinverse of the
then redundant linear system of equations. Note that
kernel density estimation fails on two datasets due to
numerical problems related to too high dimensionality.

On multiclass datasets we observe the same property.
As described in Section 3.2, the quality of our mini-
mizer of the log-posterior will depend on the mixing
matrix and this is noticeable in the reduction of per-
formance for the dense mixing matrix (scenario B) in
comparison to the better conditioned sparse mixing
matrix (scenario A). In other words, for ill conditioned
7 even our method has its limits, due simply to numer-
ical considerations of effective sample size.

7 Conclusion

In this paper we showed a rather surprising result,
namely that it is possible to consistently reconstruct
the labels of a dataset if we only have, in addition to
the observations, information about the proportions of
occurrence of each class (in at least as many data ag-
gregates as there are classes). In particular, we prove
that up to constants, our algorithm enjoys the same
rates of convergence afforded to methods which have
full access to all label information.

This has beneficial applications in a range of appli-
cations like e-commerce, spam filtering and improper
content detection. It may also suggest that techniques
used to anonymize observations, in particular for de-
mographic data, may not be really safe. (At least when
it is possible to estimate the missing information in
principle, provided enough data.) Experiments show
that our approach is eminently feasible and performs
favorably when compared to related methods.

Acknowledgments We thank Hendrik Kiick for his
MCMC codes and Choon Hui Teo for his bundle
methods codes and the useful discussions with them.

NICTA is funded by the Australian Government’s
Backing Australia’s Ability and the Centre of Excel-
lence programs. We received funding of the FP7 Net-
work of Excellence by the European Union.

References

Altun, Y., & Smola, A. (2006). Unifying divergence minimization
and statistical inference via convex duality. COLT’06, LNCS,
139-153. Springer.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian
complexities: Risk bounds and structural results. JMLR, 3.
Chen, B., Chen, L., Ramakrishnan, R., & Musicant, D. (2006).

Learning from aggregate views. ICDE’06, 3-12.

Dudik, M., & Schapire, R. E. (2006). Maximum entropy distribution
estimation with generalized regularization. COLT’06, Springer.

Gaéartner, T., Le, Q., Burton, S., Smola, A., & Vishwanathan, S.
(2006). Large-scale multiclass transduction. NIPS’06

Kiick, H., & de Freitas, N. (2005). Learning about individuals from
group statistics. In UAI’05, 332-339.

Mann, G., & McCallum, A. (2007). Simple, robust, scalable semi-
supervised learning via expectation regularization. In ICML’07.

Musicant, D., Christensen, J., & Olson, J. (2007). Supervised learn-
ing by training on aggregate outputs. In IEEE ICDM.

Schélkopf, B. (1997). Support Vector Learning. Oldenbourg Verlag.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (2007). Bundle meth-
ods for machine learning. In NIPS’07.

Table 3. Classification error on the UCI/LibSVM database

Errors are reported in % with standard error. (%) £ SE. The best
result and those results not significantly worse than it, are high-
lighted in boldface. We used a one-sided paired Welch t-test with
95% confidence level as reference.

MM: Mean Map, i.e. our method of re-estimating the sufficient statis-
tics; KDE: Kernel Density Estimation; DS: Discriminative Sorting.
This is only applicable for binary classification. MCMC: A sampling
based hierarchical probabilistic model. BA: Baseline, i.e. the baseline
obtained by predicting the majority class. {: The program did not
complete, since the dimensionality was too high (only KDE). —: not
applicable (only DS for multicategory problems). f: Algorithm as
implemented does not scale to large datasets (only MCMC).

Data MM KDE DS MCMC BA
iono 18.44+3.2 17.5+3.2 12.24+2.6 18.0+2.1 35.8
iris 10.0+3.6 | 16.8+3.4 | 15.4+1.1 | 21.1+3.6 | 29.9
optd 1.84+0.5 0.7+0.4 9.8+1.2 2.0+0.4 49.1
page 3.8+2.3 7.1£2.8 18.5+5.6 5.41+2.8 43.9
pima 27.5+3.0 34.8+0.6 34.44+1.7 23.8+1.8 34.8
tic 31.0+1.5 34.6+0.5 26.1+1.5 31.3+2.5 34.6
yeast 9.3+1.5 6.5+1.3 25.61+3.6 10.4£1.9 39.9
wine 7.4+3.0 | 12.1+4.4 18.8+6.4 8.7+2.9 | 40.3
wdbc 7.8+1.3 5.9+1.2 10.1+2.1 15.5+1.3 37.2
sonar 24.24+3.5 35.24+3.5 31.44+4.0 39.8+2.8 44.5
heart 30.0+4.0 38.1+3.8 28.4+2.8 | 33.7+4.7 | 44.9
brea 5.3+0.8 14.2+1.6 3.5+1.3 4.842.0 | 34.5
aust 17.0+1.7 33.8+2.5 15.8+2.9 30.8+1.8 44.4
svm3 20.4+0.9 27.2+1.3 25.5+1.5 24.240.8 23.7
adult 18.9+1.2 24.5+1.3 22.1+1.4 18.7+1.2 24.6
cleve 19.1+3.6 35.944.5 23.44+2.9 24.34+3.1 22.7
derm 4.9+1.4 27.44+2.6 4.7+1.9 14.2+2.8 30.5
musk 25.1+2.3 28.7£2.6 22.2+1.8 19.6+2.8 43.5
ger 32.4+1.8 41.6£2.9 37.6+1.9 32.0+0.6 32.0
cove 37.1£2.5 41.94+1.7 32.4+1.8 41.14£2.2 45.9
spli 25.24+2.0 35.5+1.5 26.6+1.7 28.8+1.6 48.4
giss 10.3+0.9 t 12.2+0.8 | 50.0+0.0 | 50.0
made 44.1+1.5 T 46.0+2.0 49.640.2 50.0
cme 37.5+1.4 43.84+0.7 45.1+2.3 46.9+2.6 49.9
bupa 48.5+2.9 50.84+5.1 40.31+4.9 50.4+0.8 49.7
protA | 44.6+0.3 60.2+0.1 - 65.3+£1.9 61.2
protB | 45.7+0.6 61.240.0 - 67.7+£1.8 61.2
dnaA 16.6+1.0 30.740.8 - 37.74£0.8 40.5
dnaB 29.1+1.0 33.0+0.7 - 40.5+0.0 40.5
sensA 19.84+0.1 43.14+0.0 - I 43.2
sensB | 21.0+0.1 43.1+0.0 - i 43.2




