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Abstract

It is usual to consider data protection and learnability @sflecting objectives. This is
not always the case: we show how to jointly control causarifice — seen as the attack —
and learnability by a noise-free process that mixes trainingnegles, the Crossover Process
(cp). One key point is that thep is typically able to alter joint distributionsithout touch-
ing on marginals, nor altering the sufficient statistic foe tclass. In other words, it saves
(and sometimes improves) generalization for supervisathieg, but can alter the relationship
between covariates — and therefore fool statistical measofr (nonlinear) independence and
causal inference into misleadimagl-hocconclusions. Experiments on a dozen readily available
domains validate the theory.
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1 Introduction

There are at least two good reasons to alter the learninglsamhja supervised learning prob-
lem. One is to help the process of learning: feature bag@fg37], importance weighting in
features, boosting [28], denoising autoencoders [41peddent noisification, dropout [40], all
are methods that optimise the presentation of examplesdaradr with the objective to improve
its generalisation abilities. The second is privacy, a gngveoncern in the public sphere [3[9, 12].
Two leading mechanisms for the private release of data #ieretitial privacy and:-anonymity
[8,19,[2738]. They guaranteedividual levelprotection,.e. identifiability, and rely on low-level
modifications, typically touching marginal distributigmsostly with noise.

Nevertheless, as pointed out in [3], "even when individaaés notidentifiablethey may still
bereachabld...] and subject teonsequential inferencesd predictions taken on that basis". The
reference is to the possibility of performirgusal inference attacksy a malicious agent willing
to uncovercausal relationshipsor even just measuidatistical independencéetween sensitive
covariates. In supervised learning, the task is the priedicf a single feature, yet the total number
of observation variables available for the task is blowipgrumainstream datasets. Each subset of
these observation variables is a potential target for lkedteend even when true causality is some-
times considered "a research field in its infancy"| [12], ih&ad to exaggerate the recent burst in
causal inference techniques [6/ 7] 14, 15,16, 17| 21, 23jedisas the threats this may pose on
privacy [2,[3/9] 19]. For example, in a medical diagnosisdahich gives a sickness state as a
function of genetic, behavioural, habits and infectiortdmg we may want to make causal infer-
ence between specific traits and behaviour harder, or we raaytw hide gender-prone infections
[32], while making sure that the utility of the dataset for predicting sickness state remains unal-
tered. Ultimately, rather than making it harder, we may jask to reversethe observable causal
direction between specific observation variables, ancethefool causal inference or causal rule
mining into misleadingad-hocconclusions. In short, we target two different levels: tagaget's
utility for the black-box supervised prediction task rensawithin control, but it is surgically al-
tered against fined-grained specific causal inferencekat@mong features.

As we show, this task is within reach. Even when coping withlével of protection to statisti-
cal independence and causal inference attacks may requargyling the complete data, this may
be done with a tighexplicit control of its utility for supervised learning, and it mayegvyield
bettermodels for prediction. Although counterintuitive, thistdact should not come with great
surprise considering the success of sophisticated naisdit methodse.g. dropout, to enhance
learning.

— This is our main contribution: to achieve our two goals, mteaduce the (single-poing§rossover
Processcp. An analogy may be done with the biological crossover: a fadmn of DNA strands
gets mixed with a crossover, but there is a single zone fastha i.e. contact point) for the whole
population. In the same way as DNA strands exchange geneiierial during recombination,
feature values get mixed between observations duriog aalthough in a more general way than
in genetic recombination. The key to learning is that difemay be done without changing the
sufficient statistic for the class, nor touching class-nmaig. The key to interfering with measures
of independence and causal calculus is thatthis able to surgically alter joint distributions. Our
contribution is therefore twofolds: (i) we introduce tbe and show how it drives the generalisa-
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tion abilities of linear and non-linear classifiers by theaduction of a new statistical complexity
measure, the Rademachar complexity RcP). We show that th&cp can be very significantly
smaller than the standard empirical Rademacher comp|éxéreby being a lightweight player —
and a tractable knob — for generalisation. Then, (ii) we show the components of@ may be
chosen to alter the powerful Hilbert-Schmidt independerriterion [15], how it may be devised
to blow-up causal estimation errofs [6], and finally how ihéaterfere with identifiable causal
gueries on a causal graph in the calculus framework [30, 35].

Organisation of the paper— Section§2 gives general definitiong3 presents the Crossover
Process and its relationships with learnabilitid shows the impact of ther on measures of
independence and causal querig8l details related experiments. A last Section discusses and
concludes. An Appendix, starting pagd 17, provides all fwcadditional results and experiments
performed. A movié presented in Subsectién 7.13.2, shows the effects oEthen a popular
domain for causal discoverly [16].

2 General notations and definitions

Learning setting — We let[m] = {1,2,...,m} and%,, = {o € {-1,1}"}. X C R?is a domain
of observations. Examples are couples (observation,)lab&l x ;, sampled i.i.d. according to
some unknown but fixed distributidl. We denoteJ = [d] the set of observation attributes (or
features)S = {(x;,y;),i € [m]} ~ D,, is a training sample d§| = m examples. For any vector
z € RY, z; denotes its coordinate Finally, notationz ~ X for X a set denotes uniform sampling
in X, and the mean operatorjig = E, sy - | [29].

In supervised learning, the task is to learn a classkies / : X — R from 8 with good gen-
eralisation properties, that is, having a smale riskE, ,)~o[Lo/1(y, h(x))], with Lo/ (2, 2') =
1...<o the 0/1 loss 1 is the indicator variable). In general, this is achieved byimising overs a
-lisk Eg p~sle(yh(x))] = (1/m) - >, o(y:h(x;)), wherep(z) > 1.« is asurrogateof the 0/1
loss. In this papery is any differentiable proper symmetric (PS) loss| [26, 29h{metric mean-
ing that there is no class-dependent misclassification).cdste logistic, square and Matsushita
losses are examples of PS losses.J5ét a predefined set of classifiers, such as linear separators,
decision trees, etc. .

Matrix quantities — The set of unnormalised column stochastic matridés,C R™"*", is the su-
perset of column stochastic matrices for which we drop theemegativity constraint, thus keeping
the sole constraint of unit peelumnsums. We let5,, C M,, denote the symmetric group of order
n. ForanyA, B € R™*™ andM € M, we let

(A,B)m = tr((l,—M)TA(l, —M)B)

denote thecentered inner produatf A andB with respect taMl. It is a generalisation of the cen-
tered inner product used in kernel statistical tests ofpedeence[14], for whicM = (1/n)117.
Without loss of generality, we shall assume that indices$ icover first the positive class:
(y; = +1 ANyy = —1) = i < i'. A key subset of matrices & consists of block matrices
whose coordinates on indices corresponding to differerstsels ir$ are zero: block-class matrices.
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Definition 1 A € R™*™ is ablock-class matrixff (y; - v = —1) = A,y = 0,Vi, 7.

An asterisk exponent in a subset of matrices indicates tieesiection of the set with block class
matrices, such as fov(;, ¢ M,, andS;; C S,,. Finally, matrix entries are noted with double indices

wn

like M;;/; replacing an index by a dot, “.", indicates a sum over theeindikeM; = >, M;;.

3 The Crossover Process and learnability

The Crossover processH) transformss in two steps: the split and the shuffle step. In the split
step, a bi-partition of the features $eis computedd = F,UF,. F, is theanchor set and is the
shuffle set. To perform the shuffle step, we need additionatiarts. Without loss of generality,
we assumé&, = [d,| andF, = {d, +j,j € [ds]}, d. > 0,ds > 0,d, + ds = d. So0,F, contains the
first d, features andF; contains the lasi, features. Let, be the identity matrix, antF*|F°] = I,

a vertical block partition wherg* € R%*% (Fs ¢ R?*%) has columns representing the features of
F. (F5) — we use notatiom.] both for integer sets and block matrices without ambiguinally,

we define therpw-wise) observation matrig € R™*? with (S)i; = ;. Let1; be thei*” canonical
basis vector.

Definition 2 For any block partitionF*|F*] = I, and anyshuffle matrix M € M,,, the Crossover
process.7 = CP(8;F* F*, M) returnsm-sample$” such that its observation matrix 8" =
[SF|MSF], and each exampl&” > (¥, ;) = ((S")"1;, v:).

We consideM fixed beforehand. Figufé 1 (top) presentsdiren a toy data wittM a permutation
matrix. Figurdl (bottom) presents another example Withlock-uniform.

Learnability — We now explore the effect of ther on generalisation. We need two assumptions
onH andy. The firstis a weak linearity condition ¢H:

(i) Yh € K, 3 classifiersh,, hs overF,, F;s. t.h(x) = ha((F*) ") + he((F5) Tx).

(F*) "z picks the features af in F,. Such an assumption is also made in the feature bagging model
[37]. Any linear classifier satisfies)( but also any linear combination of arbitrary classifieach
learnt over one off, andJ,. We letH, denote the set of all,. The second assumption postulates
that key quantities are boundéd [4]:

(i) 0< p(2) < K,.Vzand|hy((F) a)| < K.,Va € X,Vh, € H,.

LetRs(H) = Eyy,, [Suppeq [(1/m) - >, 0:h (x;)|] be the empirical Rademacher complexity
of H. Additionally, we coin the Rademachepr complexity,RCP.

Definition 3 The Rademacherp complexity RcpP) of H with respect to7 = cpP(8; F*, F5, M) is:

] : (1)

Notice that thercr is computed over the shuffle set of features only, 88)"1; = (F°) "x;.
The next Theorem expresses a generalisation baunthe CP.

RCP7(H) = E .35, [:up
eXs

3o (B((SF)T1) — h((MSF) 1)
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Figure 1: Top. example ofcp with M a block-class permutation matrix (the two blocks are in
bold). Bottom toy domain wherel = 3, but all examples have zerecoordinate (not shown). The
cpuniformly mixes examples by class. The domain consists ofdpirals (red for positive, green
for negative examples) witb = uniform distribution. Arrows depict respectively the opal
direction (black), and the directions learned by minimggim = square loss ove$ (light green,
"ex") and8” (blue, "cP"). The right plot displays test errorg-6cale) on uniform sampling of
datasets of different sizes-6cale). The effect of thepis to produce ir8” two distinct examples
thataveragethe positive / negative examples, and yield a better appratton of the optimum.

Theorem 4 Consider anyH, ¢ and split¥ = F, U F; such that(i) and(ii) hold. For anym and
anyd > 0, with probability> 1 — 6 over i.i.d. m-sampleS, we have:

Ep [Losi(y, h(z))] < Eso [p(yh(z))] + RCP#(H) + bi Rs(H) + (2K, + Ky) - 4/ % log% ,

for every classifie, and every.7 = cP(8; F*, F*, M) such thatM € M} . Here,b, > 0 is a
constant depending ap.

(proof in Subsectioh 7.2.1) Notice that Theoreim 4 requinesM is a block-class matrix. A key
to the proof is the invariance of the mean operatay= ps-. Theoreni¥ says that a key to good
generalisation is the control &fcp, (). We would typically want it to be small compared to
the Rademacher complexity penalty. The rest of this Sestmws that (and when) this is indeed
achievable.

Upperbounds onRcP »(H) — We consider different configurations &f and / or.7:

Setting (A): Classifieréa® andh® in (i) above are linear;

5



Setting (B):M € 5.
The following Lemma establishes a first boundrarp (H).

Lemma5 if 7 satisfies the conditions of Theoréin 4, tlrrp, (H) < 2 - Rg/(FH), for S =
(I,, — M)SF in Setting (A), and8’ = SF in Setting (B).S' is the row-wise observation matrix of
8.

Proof (Sketch) Consider for example Setting (B). In this casealtieg that(SF) "1, = (F*) Tx;

and lettings : [m|] — [m] denote the permutation thM represents, we have because of the
triangle inequality:

[ 1
RCP7(H) = Egus, |sup [— > i (W((F) z;) — h((F) z.))) ] 2)
| hedts m =
[ 1 1
< Egow, |sup |— ah((F)Tx)|| + Egn | sup |— aih((F) Tz
< B [ | L St 72|+ s |2 S|
=2- RS/(J{S) )
as claimed. The case of Setting (A) follows the same path. [ |

Lemmad® says thatcp,(H) is at most twice a Rademacher complexity overgheffle setThis
bound is however loose since many terms can cancel in the sam ), and the inequality does
not take this into account. In particular,

Theorem 6 Under Setting (A), suppose ahy is of the formhg(z) = 6"z with ||0]|, < r,, for
somery > 0. LetK® = SF(SF)'. Thendu € (0,1) depending only ir§ such that for any
MeM,

RCP#(H) < (urs/m) - 1/ (Im, KSYM - (3)

Notice thatk® is a Gram matrix in the shuffle feature space. The proof tegf{Subsectidn 7.2.3)
relies on a data-dependent expression;fathich depends on the cosines of angles between the ob-
servations ir8. It can be used to refine and improve a popular bound on thereadgRademacher
complexity of linear classifiers [18] (we give the proof inéldreni_1b in the Appendix). We now
investigate an upperbound on Setting (B) in which classifietH*® are (rooted) directed acyclic
graph 0AG), like decision trees, with bounded real valued predidi(say, X, > 0) at the leaves.
Each classifieh, defines a partition ovek. We letH:_ be the subset df(* in which all leaves
have in absolute value the largest magnitugs, K. Remark that we may have(, | < co while

|H®| = oo in general.

Theorem 7 Under Setting (B), suppoge® is DAG and assumptioli) is satisfied. Suppose that
log |H5 | > (4e/3) - m for somes > 0. Then, lettingodd_cycle(M) denote the set of odd cycles
(excluding fixed points) a¥l, we have:

2 |
RCP?(J{) < K- \/E ’ 1Og (1 4 6)\odd_cyclo(m)| ’

(4)



(proof in Subsectioh 7.2.4) The assumptiortéh is not restrictive and would be met by decision
trees, branching programs, etc. (and subsets). Usual baamthe Rademacher complexity of
decision trees would roughly be the right-hand sidé bfi#houtthe denominator in thivg (see

for example[[34, Chapter 5]). Hence, tReP may be significantly smaller than the Rademacher
complexity for more “involved”cps. The number of cycles is not the only relevant parameter of
the cp on which relies non-trivial bounds arcp(H): the Appendix presents, for the interested
reader, a proof that the number of fixed points is anothempater which can decrease significantly
the expectedrcp (by a factor/1 — |fixed_points|/m), whencps are picked at random (see
Theoreni 1I7 and discussion in Subseclion 7.2.4).

At last, we notice that Theoref 4 gives a perhaps countétirguationale for thecp that
goes beyond our framework to machine learning at lalgarning over acPed 8 may improve
generalisation ovefd as well By means of words, learning over transformed data may ixgro
generalisation over the initial domain. Figlte 1 (bottoriveg a toy example for which this holds.
It is also not hard to exhibit domains for which we even have:

min B [p(yh(z))] + RCP7(3) < minEs [p(yh(z))] . ®)

In order not to load the paper’s body, we present such an eeampghe Appendix (Subsec-
tion[7.2.2). Having discussed learning guarantees, weeadyrto dive into applications of the
Crossover Process.

4 The Crossover Process versus statistical independencedan
causality

With cp, we are able to destroy or fake statistical measures of gn#gnce and causal relation-
ships in the data. We develop two frameworks: Hilbert-Satrimidependence criterion areb
calculus. In the former one, our results exploit the desigih® shuffle matrixv to alter indepen-
dence; in the latter one, our results exploit the split stepecp to interfere with causal inference.

The Crossover Process and measures of independeneeHere, we assume thétis subject to
guantitative tests of independence, that is, asseskingV for somell, V C X. We computecpPs
such thatl C F, andV C J;, so that thecp alters the measure of independence. One popular
criterion to determine (conditional) (in)dependence ikelit-Schmidt Independence Criterion [7,
[14,[15].

Definition 8 LetU C [d] andV C [d] be non-empty and disjoint. L&t" and K" be two kernel
functions overll and 'V computed using. The (unnormalised) Hilbert-Schmidt Independence
Criterion (HsIC) betweerll andV is defined asisic(K", K¥) = (K", K") ¢ /;n)117 -

(We choose not to normalise thsicC: various exist but they mainly rely on a multiplicative fact
depending omn only, so they do not affect the results to come.) The choidé of thecp directly
influences the value the resultie$ic; therefore, we can design a search strategy aimed to alter it
Our first result shows that this is also algorithmic friendly) while storing kernels requirés(m?)
space, controlling the evolution of tisiC requires onlylinear-space information about kernels,
and (b) this information can be computed beforehand, andeagfficiently approximated from
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low-rank approximations of the kernels [1]. Hereafter, wstrict ourselves to the scenario of the
decreasef theHsIC, yet all our results would apply to the opposite polarity tlee modification.
We use for sake of readability the shortharglc for HSIC(K", KV).

Theorem 9 Let HsIC andHSIC» denote thedsic before and after applying ther .7 to 8. Let
u = (1/m) Ez Al(lTuZ)uZ, v = (1/m) Ez MZ'(]_T’UZ‘)’UZ‘, Where{)\i,ui}ie[d], {ui,vi}ie[d} are re-
spective eigensystemskof andK®. Then

HSICy < HsIc iff @'(l,, —M)D <0 .

(proof in Subsectioh 7.2.5) In the following Theorem, we @amsecr processes witf’ different
elementary permutation shuffling matrices. Notice thatesithe composition of permutation ma-
trices is a permutation matrix, when the matrix of the finalgesssisic .. is block class, Theorem
[ can be appliedirectlyto HSIC 7. We also letZ*" = m (1 — (K" + K?)/(2m?)).

Theorem 10 Suppose is shuffled by a sequence®f= em elementary permutatiors (>~ 0) and
the kernelK* andK" have unit diagonal. Suppose that the initiediC > %"". Then there exists
such a sequence such tha satisfies

HSICz. < %"’ + a-(HSIC—Z%"") ,

wherea = exp(—8e¢).

The proof (Subsection 7.2.6) states a more general resiltestricted to unit diagonal kernels.
Theoreni 1D is a worst-case result: some sequences of péiongtmay be much more efficient
in decreasingisic. If we compare this bound to Theorem 3(in[[15], th&’ may bebelowthe
expectation of theisic, and so Theorein 10 guarantees efficient jamming of deperdenc
Remark: it is in fact possible to kill two birds with one stone, namélick statistical tests
into keeping independenead then incur arbitrarily large errors in estimating causé&@s. Our
basis is the Cornia-Mooij (CM) modéll[6] (see Appendix, Sedigon[7.2.7) which, for space con-
siderations, we defer to the Appendix as well as for how weusanthecp to achieve both goals.
One interesting feature of this particular causal graphasit is so simple that it may be found as
subgraph of real-world domains, thus for which the resuksgive would directly transfer.

The Crossover Process and causal effects We now consider the case where the causal directed
acyclic graph is known, and the goal is to interfere with thielience of causal effects between
covariates. The key challenge for causal inference is tistesmce of confounding variables that
are causes of both the exposure and outcome variables. &mpéx, suppose impact of hormone
replacement therapy on women’s health was captured by theatBAG! — T — H,I — H,
where I represents incomel represents taking the treatment aAdis the health outcome of
interest. If wealthier women are more likely to see a doabortifeatment and also have generally
better health, theRr[H |T] will be more positive than the true causal effée{H |do(T)].

Adjusting for such nuisance or confounding variables ggitly matching[13, 33] or regression
[10], is a central tool in economics and social sciencek. [ZAg back-door criterion [30] clarifies
which variables it is appropriate to condition on in ordeathieve unbiased estimates of causal
effects. Thecp can be designed to interfere with obtaining causal estisnagesuch adjustments.



Let G = (WUJ, A) be a causal directed acyclic graph over observable verticdatent
variablesll and arcsA [30]. We are given a sé = {(z;, z}),i € [¢]} of ¢ causal queries, each of
which represents the estimationlf|x;|do(z})].

An a (covariate) adjustment for a query;, «}) is a setZ; C F such thate, z; ¢ Z; and

Pr[z;|do(2))] = Z Pr[z;|a), 2] Pr[z] | (6)

z~Z;

An adjustment is not guaranteed to exist. In our examplehfequery(H, T'), there is no adjust-
ment if / € U. An adjustment is minimal iff it does not contain any othejuatiment as proper
subset. Note th&t,; can be the empty set.

We say that the spliff, and JF interfereswith causal inference via adjustment for a query
(x;, o)) if there exists a shuffle matril such that the solution t@](6) differs between the datasets
§ and8”, with .7 = cp(§; F*, F5, M). We put no constraint on the magnitude of the change, so
interfering with causal queries is essentially a matteriasing the distributions involved in the
right-hand side ofl(6). LeZ; denote the set of minimal adjustments for query, x/).

Lemmall LetV; = ;U x; U Z;. The splitF, and F; interferes with causal inference via
adjustment for the querye;, «}) iff VZ, € Z;, 3 variablesv,,v; € V; suchthaw, € F, and
vg € F.

The proof is a direct consequence of efl (6) and the fact beashuffle matrixM alters joint
distributions between variables that do not belong to theessplit set, without touching marginals.
We can always interfere with a single quéry, «}) by ensuringe; andz/, are in different splits. To
simultaneously interfere with the set of querigsve must first find the set of minimal adjustments
Z;,Vi € Iq|, then select a split that satisfies Lemma 11 for every quetyis hvolves heavy
combinatorics. Enumerating the adjustments can be domecwiticdelayper adjustment[39](the
set of minimal adjustments for a given query can grow expbanwith d). The second step
subsumes the infamous Set Splitting problém [11], whiciViB-Complete. In practice, causal
graphs must often be constructed by humans so this appraadtilt be computationally feasible
for a small set of queries. Exploring the addition of constsaon the graph (such as sparsity) to
develop more efficient algorithms is an interesting aveoudéuture research.

A causal query isdentifiableif we can obtain an expression for it purely in terms of diziri
tions over the observable variablEsThe existence of an adjustment is sufficient but not necgssa
for identifiability. In theory, a causal query for which weMeainterfered with any adjustments,
could still be identified via another approach. The Do-Clale(i30] and Identify Algorithm[[35]
provide a complete framework for determining if a query isrtifiable and computing an expres-
sion for it. In principle, we could utilize thep to interfere with all routes to identifiability. This
would require an algorithm that could enumerate the exmmesdor a causal query. We are not
aware of such an algorithm in the literature. In practicgressions that are not of the form[df 6
are rarely used.

5 Experiments



Algorithm 1 Crossover LearningS( 7', 6y, My, F*, F*; 94, [4.])
Input SampleS, iterations?’, classifierf,, initial cp .7 (matricesM,, € S}, [F*|F°] = 1,,,);
Stepl:fort=1,2,...T
Step 1.1 :M « arg minM/eS% 4 (M o M;_1[]60;_1));
/I finds update of shuffle matrix
Step 1.2 M; < Mo M,;_y;
/[ updates shuffle matrix
[ Step 1.3 :0, < arg mingcps %(60|M;); ]
Il (optionally) updates classifier
Return classifierd; and / orcPed dataseg” M)

Our applications use the same meta-level algorithm (Atgor[1) which operates in Setting
(A) N Setting (B) M in S}, linear classifiers), iteratively composing block-claksveentary per-
mutations. HereSe: C S* is the set of block-class elementary permutations. Thatiter step
minimises a criterior;, over S¢ and potentially, after the update of the matrix, a criteriort4,
overJ. The optimization of4, is performed by a simple greedy search in the spac&ofThe
experimental setup (a dozen readily available domainsyesults are provideth extensan the
Appendix (Section 7.313); Tablé 1 summarises them. Théstel and the choice 6f, are highly
domain and task dependent: to keep experiments of reagolealgith, unless otherwise stated, we
put in F, the first half of features. In Abalone2D and Digoxin, this genparticular ground truth
(see below). Alsop=logistic loss.

5.1 Disrupting dependence and causality

General experiments— We run Algorithn{1 without step 1.3, and &t beHsic. As a proof of
concept, we show that we can destroy the significance obstati tests for independence, com-
monly as base for causal inference; in particular, we mea@r change in the-value computed
on top ofHsIc as in [15]. We use two Gaussian kernelskdrandK?, each computed over its full
subset of features (Subsection 713.1) — hence, we do notsedter specifically the dependence
between two features, but between the two sets of featufeseddyy the anchor and shuffle sets.
On most domains (Tablé 1, top row), thevalue of the independence test starts close to zero at the
beginning of thecp, which implies that in general both anchor and shuffle setg@edictably) de-
pendent. In general, we achieve a good control oRtbeand manage in several cases to decrease
the true error as well through the process.
Specific dependences- The general experiments revealed that we manage to blatveppvalue,
even for domains for which the ground truth clearplies the alternative hypothesig . To dive
into this phenomenon, we have considered two sets of expatgron whichHsIC is computed
over two specific features that are known to have a causaiae$hip. To disrupt the dependence,
we thus put one of the features in the anchor set and one irtiflesset of features.g., after
we have split the feature set in two, if both features belanthé same set, we switch one with a
randomly chosen feature of the other set).

In the first set of experiments, we consider datasets with 2 features, so that this surgical
disruption embeds kernels measured over the complete $etitofes. Experiments are reported
in Table[1 for domains Abalone2D and Digoxin (Subsectionlj.3In Abalone2D for example,
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a gold standard for dependence][16], the finafalues is more thaten billion times the initial
value. For Digoxin domain, another popular domain [7] witbwnd truth,p is very small at the
beginning (which corresponds to the ground trixh/l U; D = digoxin clearancel/ = urin flow).
After shuffling, we obtairp > 0.4, which easily bringsD LL U, while ground truth isD LL U|C

(C = creatinine clearance). A rather surprising fact is thdioth cases, the effect on test error is
minimal, considering that Abalone2D and Digoxin hale 2 attributes only.

In the second set of experiments, we consider several demaih a largerd, between 7 and
279. These domains belong to the benchmarks af [23] in wipeleific pairs are known to have
specific causal relationships, referred to as "causal tasklicated in Subsectidn 7.3.1. We have
targeted one causal task for each domain. Table 2 summénzessults obtained. In all domains,
the p-value is blown up at almost no expense in test error. Quitgarkably, the initial value is
indeedp = 0 (up tosixteendigits), while we manage at the end of the process tp ¢ieat exceeds
1%o, which would be quite sufficient to raise doubts about thesal relationships for sensitive
domains. For example, ipai r 0016, the finalp > 2%. might lead us to keep the independence
assumption between horsepower and acceleration. In Awnigt we would keep the (obviously
fake) independence between age and weight. In the Liveradksdomain, our experiment has the
following interesting consequence. Causal tpak r 0034 is the causality relationship between
alcohol consumption and the measure of alkaline phosphétds, [23]). It is known that ALP
elevation may be caused by heavy alcohol consumption. Byikgehe independence assumption
for such a value op, one may just discourage specific blood tests related tdhval@mnsumption
if they were to be designed from this domain. Again, the wemmof the test error is minimal (if
any) for all these domains.

5.2 Data optimisation for efficient learning

In the previous subsection, we showed howramay be carried out to target directly the dis-
ruption of causal relationships. In this subsection, welym@ahow (and when) it can be de-
vised to improve the test performances of classifiers. WeoparAlgorithm[d withM, = 1,,,

% (M|6) = E,, M, [»(y8'x)] (TheorenlH) ané»(8|M) = Es [p(y0 x)] + X||0]|5 where)

is learnt through cross-validation. The algorithm retwlassifier6;. The bottom row in Tablel1,
and Appendix (Subsectidn 7.8.3) shows how we almost alwagssfime permutations that reduce
the test error compared to the initial data, even when a Bpekta optimisation should care for
a risk of over-fitting, which seems to occur for problems wativery small number of features
(see lonosphere and Abalone2D, Subsedtion7.3.3). It appéso that when the (bound on the)
RCP flattens, it may indicate a regime where substantial redastcan be obtained on test error
as witnessed bg.g. Synthetic, Heart, Glass (see also BreastWisc in Talle 1@)aMb remarked
that the regime where the (bound on thep flattens can be associated with a peak or decrease of
the number of odd cycles as seen in Tdble 13, which, integgtican be used to provide upper-
bounds on th&cp as well (Theorema]7). Finally, the results on Glass display fome domains
(predictably) make it possible to kill to birds in one shotdittle effort: in this case, thep both
reduces the test error and increasesptivalue forHsic computed as in the general experiments
of Subsection 5]1.
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1. Abalone2D 0.0012 1.0 Diabete 1.0 1 Australian 1.0 0.7, Digoxin

— HSIC — phi-risk
0.9 0.6f

c o8 —  pvalde (right) [|%:0010 o8 08 08 — discrepancy
9 est error 0.0008 0.8 0.5\—  HSIC (right)
O 0§ -f test errort 0.6 06 0§ 0.7 0.4 p-value (right)
35 0.0006 0.6 0.3 test error
ho] . 0.4 0.4 0.4} . . P orF K
O] 0.5 0.2
— L o e S 02 0.2 = 1 b
[ T I S e 1 N B 0 ittt Ty L0, (CET G LEL TOL ot 0.4 0.1
n o 50100 150 200°°%° %160 200 300 400 500 606° % 100 200 300 400 s00 > || % 5 10 15 20 25 °°
T # elem permutations # elem permutations # elem permutations # elem permutations

0.7, Synthetic 0.7, Heart 0.7 Australian 0.7, Glass 1.0
g 0.6 — phirisk 0.6
R — discrepancy
"ES' 0.5 test error 0.5
[7)] 0.4} --- testerror* 0.4}
e 0.3 0.3
B 02 E___ﬂ—— 02, N

[t ags=cuis 111K s oy 7
o i :
© 0 0 L o o 0.0
'lc—s‘ "0 20 40 60 80 100 120 140 0 50 100 150 200 0 100 200 300 400 500 0 20 40 60 80 100 :
©

# elem permutations # elem permutations # elem permutations # elem permutations

Table 1: Experiments performed wittp. Top row: reduction irHsIC task; bottom row: data
optimisation task. References to domain names are prowd&dpendix, Subsectidn 7.3.1. “test-
error*” is test error over initial, non shuffled data. “dispancy” is an upperbound on tRep pro-
vided by Theorerhl6. The rightmost column aggregates thenrdtion of all curves for the task in
the row, for two different domains.

6 Discussion and conclusion

This paper introduces the Crossover Proces3, (@ mechanism that cross-modifies data using a
generalisation of stochastic matrices. This process camsbd to cope with data optimisation
for supervised learning, as well as for the problem of hangdéi process-level protection on data:
causal inference attacks on a supervised learning dathséhis case, thep allows to release
data with spotless low-level description (variable nanobserved values, marginals), substantial
utility (learnability), but disclosing dependences andsa effects under control, and thus that
could even be crafted to be conflicting with a ground truthmnepnlﬁ. Note that causality in "big
data" may still be in its infancy [12], it is however rapidlyogving with a variety of techniques
and lots of promises. We have chosen to focus here on two roajoponents of the actual trends,
namely statistical measures of causal inference and cqusaks. In these two directions, there
are some very interesting and non-trivial avenues for &utesearch, like for example the control
of combinatorial blow-up in the worst case for causal quenéeally as a function of the causal
graph structure. There are also more applications afthe the field of causal discovery. Suppose
for example that description features denote transacti@iace we modify joint distributions
without touching on marginals, our technique has directiegions in causal rule mining, with
the potential to fool any level-wise association rule mgttgorithms, that is, any spawn of Apriori
[21].

The theory we develop forintroduces a new complexity measure of the process, therRaaheer
cp complexity. We do believe that thep is also a good contender in the pool of methods opti-
mising data for learning, and it may provide new metricspatgms and tools to devise improved

°Note that the initial data may not be lost, as opposed tordiffeal privacy: knowing the noise parameters does
not allow to revert differential privacy protection, whiéecp protection is reversible whell is invertible.
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1.0 auto-mpg 0.0025 1.0 arrhythmia 0.005

— HSIC
0.8 — p-value (ri =0.0020 0.8} 10.004
testerror
0.6 ---test errorx 10.0015 0.6} 10.003
10.0010 0 I 10.002
10.0005 0.2} 10.001
0'OO 100 200 300 400 500 6000'0000 0'00 20 40 60 80 10012014016018%’000
# elem permutations # elem permutations
pai r 0016 (pii=o,4) pai r 0023 (Pii=0,4)
1.0 liver-disorder 0.0014 1.0 diabete-2 0.0014
10.0012 10.0012
0.8 0.8
10.0010 10.0010
0.6 lo.ooos 06 10.0008
oa) J 10.0006 0.4l 10.0006
10.0004 10.0004
0.2 0.2
10.0002 10.0002
O'00 100 200 300 400 500 0.0000 O'00 100 200 300 400 500 60(9'OOOO
# elem permutations # elem permutations
pal r 0034 (pinit:()m) pal r 0038 (pinit:Ou,')

Table 2:Hsic reduction on specific causal tasks|[23] (referred tpaisr 00XX); datasets indicated
on pictures; p..." is the initialp-value,0 y indicating zero up tav*" digit (see Tabl€ll for additional
notations, and text for details).

solutions that fit to challenging domains not restrictedgbtraizing learning or data privacy.
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7.2 Appendix — Proofs

We shall use the following notations and shorthands. Wd sbaietimes replace notatia} by
x! for b € {—, +}, indicating explicitly an observation from class. We also letn, denote the
number of examples in clags for b € {—, +} (m = m, + m_). Furthermorejm]|,, = {m’ +i :
i € [m]} (m € N,,m’ € N). Matrix U,,, = (1/m)11" denotes the uniform Markov chain.

7.2.1 Proof of Theoreni 4

The first steps of the proof are the samelas [4] (Theorems BM8)sketch them. First, for any
CcP .7,

Ep [Lon(y, h(z))] < Ep [o(yh(z))]

<
< Ego [w(yh(w))]+:lelgg{ED [o(yh(x))] — Eso [o(yh(e))]} . (7)

Then, sincep(z) € [0, K] (assumptior(ii)), the use of the independent bounded differences
inequality [22] yield for any sampl& sampled fronD, and any € S,,, and anyd;, we have with
probability> 1 — 6;:

Sup {Ep [p(yh(z))] — Es [p(yh(z))]}

< Baun [sup (B [olyh(a))] - Byo [oh(@)]) | + Ko Zlogg . @

We also have, because of the convexitygf (see([4]),

Es [sup (B [o(yh(@))] - Eg» [so(yh(m))]}}

hedH

< Essn [g {Es [p(yh(2))] - Es [¢<yh<w>>]}]

The proof now takes a fork compared o [4], as we integrate steyys to upperbound the right-
hand side. We split the right supremum in two, one which imesldifferent datasets of size not
being subject taP, and one which involves the same dataset with and witbheut

By [gg (Es [o(yh(x))] - Es [so(yh(m))]}}
— Essen [g (s [p(wh(@))] — Es [o(uh(@)) + (Es [p(h()] - Ess plh(@))}

< Espon [sup {Es [p(yh())] - Es [so(yh(m))]}}

heJ

7

g

=A

By [iggg{xas o (yh(a))] - Es [so(yh(m))]}} | ©)

g

=B
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We handleA and B separately.
Upperbound on A. HandlingA is achieved in the usual way![4]. Following the usual symisatr

tion trick [4] (Theorem 8), and the factl[4] (Theorem 12.4atth is 1/b,.-Lipschitz [25] for some
b, > 0, we obtain that with probability> 1 — ¢,, we have:

Fssn [sup {Es [p(yh(a))] - Es Wh(wm}]

2 1
ZUZ (x;) K, ”Ebgé_l’ (10)

Upperbound on B. This penalty appears whevt £ |,,,. The trick is because is proper sym-
metric, there is a simple way to make appear Rademacheblesiand a particular Rademacher
complexity, which follows from the fact that [29]:

4
S 7 O'NE"L sup | —
b heH

V61 > 0.

Bs [p(yh(@)] = 55> > wloh(@)) - ==, (11)
where
n(8) = % : yih(z;) (12)

is theh-mean-operatara statistics which can be proven to be minimally sufficientfasses given
h [29]. Now, assumptiori) yields the invariance of (S) under permutation operation. This is
proved in the following Lemma.

Lemma 12 (mean-operator consistency 6f) Under the conditions of Theordm 4,
h(8) = h(87) ,Vh,V8,V.T . (13)

Proof To prove it, we letb denote the vector concatenation operation over the featifg, and
Fs. We now first write using Assumptid(:

mRE) = 3wz

= Zyl (SF)T1;6 (SP) 1)
= Zyz (SF)T1, +Zyz (SF)'1) (14)

and also, for the same reason,

m-h(87) Zyl ((SF)T1,) +Zyz (MSF)"1,) . (15)
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Therefore, we need to prove an equality that depends only tipofeatures of;:

Zyl ((SF)"1,) Zyl (MSF)'1,) . (16)

We have two cases to consider to prove €ql (16). Notice thaest is a block-class matrixv
admits the following block matrix decomposition:

o[0T a7

with M, € R™>*™ e distinguish two cases.
Case 1 — Setting (A). In this case,

>y h((MSF) 1)

Il
IS

>
n

@ Z MilSlk>

1€[m] 1€[m] k€[ds]a, 1€[m]

= Zyi'hs ZMzz @ Slk)
i€[m] [m] kelds]a,

= S yih ZMZ-Z(SFS)Tll)
i€[m]

= > u > Ma-h((SF)T1) (18)
€lm]  l€[m]

= > Z Ma | - B ((SF)T1) (19)
l€[m)]
l€[m)]

Here,® denotes the concatenation operator. Egl (18) holds beca&sting (A), eq.[(IP) holds
because of the class-consistency assumption[(ely. (1d)E@i20) holds becaus¢ € M,,,.

Case 2 — Setting (B). We haw < S* (and no further assumption @n). In this case, letting
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S :[m]

— [m] represent the (block-class) permutation, we have:

Zyz (MSP)'1,) = Zyi'hs( @ ZMilSlk)
i€[m]

i€[m] k€(ds]a, l€[m]

= Z Yi + s ( @ Sg(i)k)

kelds)a,
= Zyl SFS T1 )
— §jwz « ((SP) 1) (21)
= Z - he ((SF)T1) . (22)

Eq. (21) holds becausd is a block-class matrix (eq[(1L7), and ed.1(22) holds becatisea
permutation. This ends the proof of Lemma 12 [

As a remark, wher,(xz) = 0]z, with 8, € R%, eq. [I8) shows the invariance of the mean
operator

o1
HsT = s = a;yzwz VT) . (23)

as minimal sufficient statistic for the classes|[29]. Usigg.€11) and(13) yield the first following
identity (78, 7, h):

Es [p(yh(z))] — Esﬂ[( h(z))]

IN

Es [p(yh(zx))] — Esz [p(yh(zx))]
b@{ z@z o(oh((SF)T1, @ (SP)T1,)) }
o _

206212 o(ch((SP)T1; & (MSP)T1,))

> p(ah((SF) 1@ (SP) 1)) }

2_ Egos,, - (24)
" | 2 p(@h((SF)TL & (MSF) L))
% Eoos,., ((SF) "1, @ (SF) 1) — oyh((SF) 1, & (MSF) ' 1) ] (25)

. [Z { (ha((SF)T1;) — ha((SF) 1)) }u 26
=— Eyux, o; +

2 i (hs((SP)T1,) — hs((MSP)T1,))
ﬁ-EMzm [Zal(h ((SP)T1;) —h ((MSFS)TL))H : (27)
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Eq. (24) holds because is Rademacher. Ineql_(25) holds becausés (1/b,)-Lipschitz [25].
Eq. (26) holds because of assumptfyn We thus get the following upperbound fBrin ineq. [9):

Es [sup {Es [p(yh(@))] - Eg» [so(yh(m))]}}

heJ
] , (28)

< Esop

sup Egs; ” Za, ((SP)"1;) — hy((MSF) 1))
hs

< Esuponsn, SUp

Za, ((SF)T1;) — hy((MSF)T1,))

where ineq. [(2B) holds because of the convexitywof. Using assumptiofii) (hs(.) € [0, K{),
another use of the independent bounded differences ingged] yield with probability> 1 — &:

|

Za, ((SF)T1,) h((MSFS)Tli))‘

S G((SP) L) — h((MSF) 1)

s %

ESND,UNEm [sup

Y 2 1ogi (29)

We now put altogether ineq4.] (8), (10) ahd|(29) and obtaitwiita probability> 1 — (20, + ds),
we shall have

Ep [Loji(y, h(®))] < Eso [p(yh(z))]

S EUNZm lsup
hs

+EU~Em lsup

! Zai(hs((SFs)Tl') ho((MSF)1,)) ]

o\ — log61+K \/ — log62 (30)

To simplify this expression, we fix; = 6, = 5/3 and get with probability> 1 — 0,
Ep [Lon(y. h(z)] < Esz [p(yh())]

_I'EO'NEm lsup
hs

S ah((SF) L) - hs<<MSFS>T1,->>u

2
ZUZ x;)|| + (2K, + Kj) - \/Elog%

= Egz [p(yh(x))] + RCP#(H) + 4 Eoos,, % Z oih (x;)

b‘P
/2 3
+(2K@+Ks) . alogg s

from which we obtain the statement of Theorem 4.

4
+—- EUNEm sup | —
bap heXH

sup
hex

|
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7.2.2 Example of domain andcp for which (min risk over 87 + Rademachercp complexity)
is strictly smaller than (min risk over 8)

We exhibit a toy domain which shows that

min B [p(yh(z))] + RCP7 (H) < minEs [p(yh(z))] (31)

for o = square loss. LeX = R?, with § consisting of2 copies of observatiofD, 0) (positive),2
copies of observatiofi, 1) (positive), andl copy of observatioi—1, —1) (negative). We enumer-
ate the examples i in this order. Thecp satisfies = {z}, F* = {y} and

00100
00010

M = 100007,
01 000
00001

so that§” consists of two copies of observatioh 0) (positive), two copies of0, 1) (positive)
and one copy of—1, —1) (the same observation as8jh Leth = 0, with its coordinates denoted
x andy. The square losé overS§ equals:

L = %-(2+2(1—x—y)2+(1—x—y)2) , (32)

which is minimized forr = y = 1/2 and yieldsL = 2/5. The square losé” over$” equals:

L7 = - 2(l—a)P+2(1—y)’+(1—z—y)?) , (33)

(S

which is minimized forz = y = 3/4 and yieldsL” = 1/10. Assuming all linear separators have
/-, norm bounded bg/4 (which allows to have both solutions above), theris

1

m

RCP#(H) = Eyox,, [:uﬂg
(SN

D>_0i (h((SF) 1) = h((MSF) 1))

1 3 1
— g.1.1_6.z:|—a‘1—0’2—|—O'3‘|'0'4|
ocyy
3 1 T
= %1—62}1 o"
ocY,
~ 3.l 4242.840-6) (34)
20 16
3 24 9
We then check that
, 13 2
L7 +RCP7(H)=— < - =1L 36

as claimed.
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7.2.3 Proof of Theoreni6

The proof of Theorerml6 follows from the proof of a more gen@taorem that we prove here. We
say that(M, K®) satisfies th€~, §)-correlation assumption for some< §, v < 1 iff the following
two assumptions hold:

@) ((Iy = M)KE(l, = M) ")y > (1 =6) - (1/m) - tr ((I, — M)KS(1,, = M) T), Vi € [m];

(0) [((1e = MIKE(L = M) )i / 3/ (L = M)KE (L, = M) T) (L — M)KE (L, — M) T | >
1 —~, Vi, i € [m].

Regardless 08, there always exist < d,7 < 1 for which this holds, but the bound may be
guantitatively better when at least one is small.

Theorem 13 Using notations of Theorelh 6, there exists 0 such that for any and.7 for which
(M, K*®) satisfies thé~, ¢)-correlation assumption, we have

Tg 1
. < . a = s )
RCP#(H) < u N \/m (Lins KM Im (37)
with
W= (o) (1—1) , (38)
m m
andk(e) =1—((1=0)(1 —¢)(1 —~))? € (0,1).
Furthermore,
1
— (I, KM = 2 ) V(SF1;)(1 - p(SF1;, MSF'L))) . (39)
m jeld)
Proof We observe thate € ¥,
arg  sup B ZUZ'OT (1, = M)SP)"1;)

OcRs:[|@2<rs | TV

N 1> 0i((In —SM)SFS)T]_Z_HQ zi:m((hn —~M)SF) "1, ,
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and so:

RCP7(H) = Eonsx, [:élg}{) %;ai (h((SP)'1) —h((MSFS)Tli))“ (40)
= DB,y [ 3 0i((lm — M)SF) 1, ]
i 2
= = ;H((Im— M)SF)TL);
e | Jis Siso 030w L] (i — M)SFS(SFS)T(l,; — M)T1,
22 [1((H = M)SF) T4,
= = S = MSP)TLE - Eoes, [VITu(@)] (41)
with
T _ T ~ M1,
(o) ZZ#Z,O}O‘yl (I, —M)SF(SF) (I, — M) "1, 42)

> (L = M)SP) T14 5

Let us call for shorts; = ((1,, — M)SF)'1;, so that eq. [[42) can be simplified tdo) =
(O 16:l13) 7 Y 010w 8. Vi € N, we have

Eges,, [u"(0)]

N (Z ||5 H aNEm [Z Z Z Hglkg%élké’k]

11750, i inFih, k=1

AR ||6|| 22 ZE[H 49,9 ]

BEZIRE2A in i,
= (Z ||6 || Z Z . Z H EUNEm [(Uigi’)n(i7i/):| (6;|—5zr)n(2’2/) 7(43)
i174) i271h in7in, (4,3)E{ (ki) oo,

with n(i,i') = |{k : (i,7) = (ix,7,)}| satisfying>_n(i,i') = n. Whenevern(i,:') is odd,
Eoos,, [(0i07)"0)] = 0 (becauser is Rademacher), and it is 1 otherwise. We get, i§ even:
Egs,, [u"(0)]

l
! T 2ny,
AL S ILele)™ . @
i 0<l<n {nk}£:1 C N, {(Zlm Z;f) £:1 k=1
st.2Y ny=n stip #i,Vk

~((n)

andE, .y, [u"(o)] = 0if nis odd. Since

(45)

n—1
Vitz = 1+22n T - 2k)a
k=0

TLGN*
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we get after combining with eqs (41) aind(44) and using thentliefn of {(.) in eq. [44):

Repr ) = a'\/Z”‘S"”%(l_Z 5 v((zz ||zs||(> )>

-
]

2n— 1
_ s I [T —1) -
- m e (- D IR o) e
with:
¢(2n)
2n
. 19,117 '
. ES NN
S0 SID SERD DU i IS @
E o CNe o {G 3 e M\ T T Vi

St.Y np=n S.ti#i, Yk
and~; » = cos(d;, d,). Remark that eq[(46) is an equality. We now use assum(dicand obtain
4
(2n) > (1-0)* Z Z > IT i)™ - @8)
i c N (Gl

Denote for shortl(n) the set of eligible triplegny, ix, ;) in the summation. We get because of
assumptiorgb) ¢(2n) > |U(n)|((1 — §)(1 — ~))*", and so, using the shorthand

o1
Z = E'ZH‘LH? (49)

we obtain our first upperbound,

Ty (L=8)1 =\ Lt (2k—1)
RCP7(H) < m-@~<1—2|u<n>\( - ) " 3 (an) )(50)

neN,

Lemma 14 There exists a constaat> 0 such thatvn € N,,

w2k 1)
(2n)! -

(2(1—€)™ . (51)

Proof We proceed by induction, letting(n) = (2(1 — ¢))** and

o (2k— 1)
(2n)! ’

f(n) = (52)
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and fore = ¢, = 1 — 1/(2v/2). We remark thay,, (1) = f(1). Furthermore,

2(n+1)—1 2n—1
T2k -1 @n-1)@n+1) [Nk - 1)
fo+ ) =00 = miDmty @)
)(

(2n —1)(2n + 1) 9
(21 =€) 53
CES ) Y (53)
B (2n—1)2n+1)
C (n+D)(n+2)(2(1—e)
where ineq.[(53) uses the induction hypothesis. We provkdhena once we prove that the factor
on the right is at least 1, that is, fer= ¢,, we need to prove

2 .gE(n+1) Y

2n-D@n+1) _ 1

n+1)(n+2) = 2 (4)
which is indeed the case since the left function is strigtlyréasing oveN and equals the right-
hand side fon = 1. [ |
So we get from ineq[(50):

N o o 2n
RCPy(J’() < \;;_1\/? (1_1%“/((”” <(1 5)(1m’7)(1 E)) >
rs (1=0)(1 =1 =e\™
< \/m\/o?<1—u*(m)n%;< -~ ) ) ) (55)
whereu,(m) satisfiesu,(m) < min, |U(n)|. We finally get:
RCP, (H) < \;ﬁ Nz (1 ~ (1= () - — _“(*1(”?%(6)))
< \;ﬁ@ (1—(1—,{(6))-%?)
Ts 1 1
< ﬁ@<a+m(e) (1—a)) , (56)

with k(e) =1 — ((1 = 8)(1 —€)(1 —v))? > 0, sinceu,(m) > m(m — 1) (obtained for’ = 2n in
eq. [48)). We finish the proof by remarking th#tin eq. [49) satisfies

L = — > 1/ (I, —M)SF(SF) (I, — M)"1,

41 (I = M)SP(SF) (1, = M)T)
1 (L = MK (1 = M)T)
1 (L = M) (1, — M)K?)

. <|m,KS>M . (57)

S=3[=3=3= 3=
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Ineq. [56) and eq[(57) allow to conclude the proof of Thedigmvith

u = i—i—/<a(<—:) (1—i) , (58)
m m
which, sincex(e) < 1, satisfies indeed € (0,1). This achieves the main part of the proof
of TheorenTIB. To prove eq[(39), we just have to write (lgttin: [m] — [m] represent the
corresponding permutation),

1
— I, K®
— )M

o 1 Z s s }2

A 3 — mc(i)} 2

_ Z i . Z (ZES _ 78 )2

- m iy ()

jE€lds] i
1 S 1 S S

= 2 Z {E : Z (xij)Q e injxg(i)j} (59)

jelds] i i
1 1 i 1 *

=22 {m D @) - (5 - sz%—) + (a ~ sz) - szxiw}
jE[ds] i i i i

= 2. > {V(SF1;) - Cov(SF1;, MSF1,)}
JeElds]

5 Y WPy {1 _ Cov(SP1,,MSF1)) } (60)
s VV(SF1,)/V(MSF1,)

= 2. ) V(SFL)(1 - p(SF1;, MSF1)))
J€lds]

where eq.[(60) follows from the fact th&{SF1,) = V(MSF1,). [

Remark: it is worthwhile remarking that the proof of Theoréin 6 casoabe applied to upperbound
the empirical Rademacher complexity of linear functionghaut modifications, except for the
handling of.Z. In this case, the proof improves the upperbound knéwh [IB&6rem 1) by factor
win eq. [68). This is due to the fact that the proof(in/[18] tak¥s account only the maximum
norm in the observations &, and not the angles between the observations. We now stte th
corresponding Theorem.

Theorem 15 Following [15], we leti’* denote the set of-tuples drawn without replacement
drawn from[m]. Supposé satisfies the following for some~ > 0 andr, > 0:

@) llaill3 = (1= 8) - (1/m) o, llaca 5, Vi € [m];
(b) Egi,inmip

©) llzillz < 72, Vi € [m].

cos(xi, xy)|] > 1 —;
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Figure 2: A permutation defines an oriented graph whose vertices are examples amdifagion
¢ defines arcs (here(1) = 2 for example; black dots are positive examples, red dots egative
examples). Each term in thep of eq. [62) is a weighted cut (one weighted cut for eacle
{-1,1}™): the squares depict the examples for whigh) = 0 in Lemma&L6 for ther displayed.
In this example o#r, only two examples out of the six would bring a non-zero weigh).

Then, assuming thak( contains linear classifiers of the fort' = with ||0]], < ry, there exists
e > 0 such that the empirical Rademacher complexit§{odatisfies:

Rs(H) < (% + k(e (1 - %)) : ;% , (61)

with s(e) = 1 — (1 — 8)(1 — €)(1 —~))2 € (0, 1).

[18]'s proof relies on(c). Since(a) and(b) can always be satisfied for somey > 0, ineq. [37T)
holds under their setting as well; however, it becomes b#tan theirs as both ~ are small, so
in particular in the case where observations start to beilyeawrelated and be of approximately
the same norm. Indeed, in this ca$eg, o;x; will often havesmallmagnitude, because,, > o ~
{—1,1} and thus many vectors will approximately cancel througtstima in many draws of-.

7.2.4 Proof of Theorenily

We first start by a Lemma which shows that indeezb () can be significantly smaller than a
Rademacher complexity.

Lemma 16 Suppose setting (B) holds in Theorem 4. Then

S > wlih((SF) 1)

m

RCP7(H) = 2-Eyus,, [sup

hs€XHs

] : (62)

wherew(i) = (1/2) - (0; — oc-1(3)) € {—1,0,1}.
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The proof of this Lemma is straightforward. What is inteirgstis, sincew(.) can take on zero
values, to what extemcP (H) can be smaller than the corresponding Rademacher comypiexit
whichw(.) would be replaced by € {—1, 1}, and what drives this reduction. Figlide 2 displays
gualitatively this intuition on a simple example. We nowastigate a quantitative derivation of
the reduction foDAG classifiers.

We letcut (o) = {i : 0; # o1, }. We simplify notations in the proof and drop notatioso
that notatiom:! = h((SF)"1;) wherei € [m]. We let

p=Eoux, |sup Y oibl| | (63)

hs €362 i€cute (o)

which is a generalisation ofi - RCP»(H) to any permutatiog € S,,, and not just a block-class
permutation inS?, as assumed in Setting (B). We assume basic knowledge of Magdsate class
Lemma’s proof. Using Jensen’s inequality, we arrive, dftersame chain of derivations, for any
t >0, to:

1 i
exp(tp) < m Z sup exp | - Z oihi | . (64)

El
oe{-1,1}m hs €3 i€cute (o)

The proof (of Massart’'s Lemma) now involves replacingshg by a sum. Remark that wheénis
DAG, thesup implies that eachi/ is in facte {+K,}. So letus usé{® C 3%, the set of classifiers
whose output is iIf+K;}. We get:

exp(tp) < Z 2% Z exp | t- Z ohl ] . (65)

hs€H5, oc{-1,1}m i€cute (o)

To identify better permutations, we name in this proaf S’ the permutation represented by,
so that we also have

odd_cycle(M) = odd_cycle(s) .

Since each coordinate efis chosen uniformly at random, cycles in a permutation ssputt and
exp(a+b) = exp(a) exp(b), the inner sigma in ineql_(65) factors over the cycles of peationg:

Zgim Z exp | t- Z oih!

hs€HY oe{-1,1}™ i€cute (o)
1

Sl B D Sl (2 SR 3 | IS
hs€H5 Uecycle(s) \oc{-1,1}IV i€cute (o)NU

wherehV indicates coordinates df in U andcycle(s) is the set of cyclesvithout 1-cyclegi.e.
fixed points) — we have let:,. denote the number of fixed points @f\We have used the fact that
cycles define a partition dfn|.
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Now, whenevelU contains arodd number of indexes, whatever, the sum ovetut (o) N U
cannot cover the sum oveér: there always remains at least one vertex which does nohetm
the sum (In Figurél2, the red dot cycle displays this fact omxample). Let us denotg € [|U]]
this vertex. Sincexp(z) + exp(—z) > 2 + 2? andh, € H5,, we get:

Z exp | t- Z o:h!

oe{-1,1}UI i€cute (o)NU

1
S SreRe Yo e |t D bl |- (exp(thi) +exp(—thl)) b (67)

oc{—1,1}IV i€cute (o)NU
2
< e 2 O (t'za’hg)’ (68)
® oe{-1,1}Ul iU

since the multiplication in ineq[_(67) duplicates part of terms in[(6B). We now plug this bound
in eq. [6% —66) and finish the derivation following Massafitste class Lemma:

9 lodd_cycle(s)] 1

hs€HS oc{-1,1}m
9 lodd_cycle(s)]

Z H exp(th’) + exp(—th)
2
9 |odd_cycle(s)| t2 ) 2
< ([—2 | = ;
< (ovem)  reler(3 X(emn) ) e

hs€H5 1
i

9 lodd_cycle(s)] . tngsg
s \oveme G exp | —5

Ineq. [69) holds becaugexp(z) +exp(—=z))/2 < exp(x?/2). Taking logs and rearranging yields:

1 || tmK?
< —-lo + - 5 70
o= t g <1 N t2§(§> lodd_cycle(s)| 2 ( )
Now, suppose that we can choasaich that
2K2
> e, (1)
for some= > 0. In this case, ineqL(T0) implies
1 | HE | tmK?
K < ; ’ IOg (1 + E)\odd_cyclo(g)\ 2 ’ (72)

which is of the formu < A/t + Bt with B > 0. Takingt = \/A/B yields, using the fact that
each classifier itHs, :

|H
w < K- \/2mlog (15 o) Pyl - (73)
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Dividing by m gives the statement of Theoré€in 7. We need however to chetintgta [71) holds,
which, sincet = /A/ B, yields that we must have, after simplification:

log |H%| > em + |odd_cycle(c)|log(1l +¢) . (74)

Since we have excluded fixed poiniisdd_cycle(s)| < m/3, and sincéog(1+x) < x, a sufficient
condition islog |H5_ | > 4em /3, which is the Theorem’s assumption.

We now show a bound on the expectedp whenM in .7 is picked uniformly at random,
with or without the class consistency requirement, as ationof the non-fixed points in the
permutations. Followind [15], we ldf* denote the set of-tuples drawn without replacement
drawn from[m]. We also lef”* denote the set of-tuples drawn without replacement drawn from
m] N {i:y; =01}, forbe {— +}.

Theorem 17 Under the joint Settings of Theordm 6 and Setting (B),Stetdenotes the set of
permutations with exactly non-fixed points, and*’ its subset of block-class permutations with
non-fixed points in class € {—, +}. Then forS € {S* S*- Sk+1 the following holds over the
uniform sampling of permutations:

T E
vm Vm

s — 2|3 i S = Sk, and 2 = B, palas — a3[F] it S = SN

EmM.s[RCP7(H)] < u- 2 | (75)

Wherec@ = E(Z,Z’)Nlén[
(b S {_7 _'_})

Proof We make the proof fof = S* . The two other cases follow in the same way. We have from
Theoreni b, because of Jensen inequality:

Ts 1 .
EMNS,I%[RCPQ(%)] < u\/mEMNan \/E<|m7K>M
< e k) (76)
vm V'm m

We now decompose the expectation inside and first condifidh@ set of permutations whose set
of non fixed points are the same setkoéxamples, say for € [k]. Let us callSk* this subset of
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Sk . In this case, we obtain:

EMsp: [{lms K Mm]
= EMeoge [tr (I = M)K (1, — M) )]
= tr (K% + Epoge [tr (MKPMT)] —2-Ep e [tr (MK®)] (77)

— 2. tr(K)—tr<EM~S§:‘ [M]KS))

— 9. Z D OKL - YK (78)

1€[m] 1€[k] i’ €[k] 1€[m]\[¥]
k—1
= 2| ) K- D KG
Ze[k’} ( )612
2 K?z + Kf’z’ S
= E Z K
(4,8)€ib
1 S S
= o0 D =i (79)

(i,4)€ik
In eq. [7T) we use the fact thKt is symmetric. Eq.[(718) uses the fact that

U 0
Emsy: M= {Ok I |m_k] ’

where we recall that), = +- 117 (main file, Definitior{8). There remains to average €ql (7&yov
the set of all permutations whose set of fixed points is a miffe(m — k)-subset ofm] and the
statement of Theorem117 is proven o= S . |

The key point in the bound is factdr/m, which implies that when permutations have lots of
fixed points, say1 — Q(1))m, then thercP may just vanish (as: increases) wrt the Rademacher
complexity, whose dependency onis 2(1//m) [18].

7.2.5 Proof of Theoreni®

The proof stems from the following Theorem, which just asssthat* andK” can be diagonal-
ized (hence, itis applies to a more general setting tharekéunctions).

Theorem 18 Let K* andK” be two diagonalisable matrices with respective eigendgomsition
{Ni witieqq and {p;, v; }icjq, With eigenvalues eventually duplicated up to their algébmul-

tiplicity. Lettinga = (1/m)1"a denote the average coordinate in the difference in Hilbert-
Schmidt Independence Criterion with respect to shuffiihgatisfies:

.
HSIC(K", KY) — HSIC(K*, MK*M ") = —2m- <Z AiﬂiuZ) (I, — M) (Z m@w) (80)
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Hence, ifM € S¢, permuted and/’ in [m], thenHsIc(K*, MK*M ") > HsIc(K, K) iff:

(Z At (Ui — Uw)) (Z 10 (Ve — Uw)) > 0. (81)

Proof Being symmetrick* andK® can be diagonalized &' = Y, \iuu, andK” = >, o0,
We use definitior,, = (1/m)11" for short. The following is folklore or can be can be checked
after analytic derivations that we omit:

tr (U, K"K?) = m(Z )\iﬂiui> <ZM@’U¢>

= tr(K"U,,K")
tr (U, K"U,KY) = m? (ZAZ-@)?) (Zm(@-)Q)
tr(K'K”) = > N (82)
We thus get
HSIC(K", KY) = <K“,K”)Um
= tr((ln — )“(I — U, )KY)
= tr(K"K") —tr (U,,K“K") — tr (K*U,,K") + tr (U,,K"U,,K")

m? - (Z )\z‘(ﬂi)2> : (Z Mz’@i)2>
<% : Z Aifti — % Z Nt p105v; + Z )\iﬂj(ﬂz’)z@)z)

2
= m? ( 12 . Z)\i,ui Z)\Zru] u;r'vj + Z)‘z/i] ( u vj — ﬂﬂj) )

m
1
m2

— AT (1= C)u+>\TJu) (83)

_ Z Aijti — 2m - (Z AT >T <Z uﬂz’vz>

m2
= A ((1-C)+m*-Jp . (84)
We have used here the square cosine manixith C;; = cos?(u;, u;), and the square correlation
matrix Jwith J;; = ((1/m)u; v; — w;v,)?. Now, suppose we performp .7 with shuffling matrix
M. K" and its eigendecomposition become after shuffling

MK'MT = Z,ui(vai)(vai)T. (85)
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Remark that shuffling affects the order in the coordinat@lbkigenvectors. So the difference
between the two Hilbert-Schmidt Independence Criteridoflee- after shuffling) is:

HsIC(K", KY) — HsIc(K*, MK*M )
= Z it (u) Mv;)* — (ufv;)?)
— Z it {(UZTMvj —miv;)” — (u] v — mﬂﬁj)Q}
= Z/\Zuj u! L) - ) (M A+ 1,)v;
_ZAM {uf (M = 1,)v; - (u] (M +1,,)v; — 2mTu7;) }
— 9m.- Z()\mi)uf(l\/l — L) (11575)
ij

= 2m- <Z )\ﬂlul> (M —1,,) <Z ,uﬁifvi> ) (86)

We now remark that wheneved < S¢ , if it permutes/ and ¢’ in [m], thena(M — 1,,)b =

ag(bg/ — bg) + CLgl(bz — bg/) = —(CLg — ag/)(bg — bg/), SO we get:

HSIC(K™, KY) — HSIC(K*, MK*MT)
= —-2m (Z )\Zﬂl(ulg — Ui@’)) (Z ,Uiﬁi(vz[ - UiZ’)) ) (87)

and we get ineq[(81). [ |
This ends the proof of Theordm 9.

7.2.6 Proof of Theoren 1D

The Theorem is a direct consequence of the following Theorem

Theorem 19 LetK" andK" be two kernel functions ovér Then for any elementary permutation
M e S¢ that permuteg and?’ in [m],

HSIC(K", MK’M ") — HsIC(K",K?) = —2m - Cov( s o) + Ryl (88)
with
Koy’ = (K — Kpg) (Kg — Kig) + (K — Kiig) (Ko — Kig) (89)

Furthermore, the uniform sampling of elementary permotaiinS¢, satisfies:

EM.ge [HSIC(K*,MK*MT)] = (1—%) HSIC(KY, KU)—FLI X", (90)
m m_ —
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with

Here, when replacing an index notation by a point, “”, we dé®ma sum over all possible values
of this index.

Proof We first decomposasic(K*, K?):

u v u v u v 1 u u
HSIc(K", KY) ZK K, ZKK + KK (92)
forany (¢, ¢') € iy*. For anyM € S¢, denoting an elementary permutatioof the features i
such that? C 3 andq(¢) = ¢, (¢') = ¢, we obtain:
HSIC(K", MK"M ") — HsIC(K", K")
= 2 (Z KK + Z KKy — Z KuKe — Z K?/iKZ'i>
iA00 iA00 i#0,0 iA00
2 K7 K7 2 Ky Ky + 2 Ky K, + 2 Ky K
m 00N m 2t m 07N, m 0t

1 u u v v
L (KE K (K] - Km)

+(Kge — Kig) (K — Kirg) + (K — K (K — Kiig)
= —2m . COV( ?E” 6?@/) + e@;érv 5

which is eq. [(8B). We also have:
S — KK — sz] - Z ik = s DO KIKG
Ty K
u v 4 u v
= — ZK K, TD-ZKZKZ,

_ (ZM KK~ K —

%

EM s,

EM s, [(K} = Kj (K} = K5)] = %-ZKﬁK?—ﬁ'Z“ 2 K
i i€[m) i’ €[m]\{i}
. %.;Km—ﬁ;ww—m
_ %.ZKm—ﬁK?K%ﬁ;K?K?
— _1 ZK“K“— 4_1)K?KT’_,
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and finally

w,v 8 wis 1 Z Kqu_"Zi K%KZ
EM s, ] = m'lszKﬂ‘_ < 2 )]

m

= S g (93)

m— 1
since
IEMNSe [(K?Z - K?'z)(K})e - K})'e)]

- ZZK“K“ ZZK;@K;, ZZK“ K

) ) i i

u v u v ’l) 2 u u v
= —ZK K7, _1 ZK K% mzi:(Ki.—Kn’)Kn’
= —ZKUKU m(m — 1) ZKUKU m(m —1) ZKUKU (m2—1)2i:KgK
4 u v u v u
T om-12 Kz’f'K“‘m;K“K“m;K"K

= EMNS; [(Kio — Koo (Ko — Kgp)]
So we obtain
EM se [HSIC(K“ MK*MT) — HSIC(K“ K")]

_ _1 ZK“K“,+ _1 ZK K?

8 8
KUK’U KKU %UJ’U
e S ek S

8 8
= —— -HSIC(K",K") 4+ —— - %" .
m— 1 (K, )+m—1

This ends the proof of Theordm]|19. [ |

When kernel functions have unit diagonal (such as for thesGaun kernel), eq[ (91) simplifies to:

a = <1—#-<7K7;K7)) | (94)

Hence, provided we perforfi = em elementary permutations, there exists a sequence of such
permutations such that the compositiddn = M+M+_; - - - M, satisfies:

HSIC(K“, M, K*M]) < (1 — Ll) -HsIC(K*, K") + [1 — (1 — L) } 7

m — m—1

< «afe) - HSIC(K",K") + (1 — a(e)) - Z"" (95)
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Figure 3: The Cornia-Mooij model [6]. Left: belief, rightrue model.

with
ale) = exp(—8e¢) , (96)

as long asisic(K*, K") > #“". We have used the fact that
1 8 o 8em
m—1 P m—1

< exp(—8e) . 97)
This achieves the proof of Theorém 10.

IN

7.2.7 The Cornia-Mooij model and results

We now show how to trick statistical tests into keeping iretegenceand then incur arbitrarily
large errors in estimating causal effects. The model we tefes the Cornia-Mooij (CM) model
[6], shown in Figurd 3. In the CM model, there aie= 3 observation variables, and a true
model which relies on a weak conditional dependencél x3|x,. [6] show thatf one keeps the
independence assumptidfy thatx; LI z3|xs, this can lead to very high causal estimation errors,
as measured bjE|x3|zs] — E[xs|do(z2)]|/|z2| [6]. We show that thep is precisely able to trick
statistics into keeping,.

There is a hidden confoundex, which is assumed to be independent fromThe true model
makes the following statistical dependence assumptions:

* I ﬂxz.
® T2 —JLLxg,
 and the most important one, which we scramble througltthe; VL x3|x.

We chose this simple model because (@) it belongs to the fastwgase models for causality anal-
ysis, and (b) it shows, in addition to jamming (non)linearretations, howcr can also jam partial
correlations. Inthe CM model, there ate- 3 observation variables, and a true model which relies
on a weak conditional dependenee /I z3|x5. [6] show thatif one keeps the independence as-
sumptionH, thatz; LL x3|x,, this can lead to very high causal estimation eﬁ.dme showthatitis

3As measured byE|[x3|z2] — Elxs|do(z2)]|/|z2| [6].
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possible, through ap, to trick statistics intckkeepingH, as well In the following,F, = {z3}. Itis
shown in[6] thatr; 1L x3|x, iff the partial correlatiom i3y, = (p13—p12p23)/ /(1 — p25) (1 — p35)
vanishes. Assuming,s)., is large enough in the dataset we have (so that we would r&jefrtbm
observings), we show how to reduce it through a sequencers, using a similar strategy as in
Theoreni 1D, the main difference being that we rely on bldekscpermutations. For arye S,,,,
notation3® indicates column variable 3 shuffled. We assymeg.. > 0 (the same analysis can be
done ifp(lg).g < 0)

Theorem 20 Suppose that there exists- 0 such thap?, < 1—eandp3,. < 1—eforanys € S,.
Then there exist$’ > 0 and a sequence af elementary permutations ifi;, such thatp(;s.)., is
strictly decreasing in the sequence and meets at thepgpg, < % with

Z = (1= pr(L=py) (fn —pr2-fiz) - 13
andp; = (1/(2y7;)) - 22 V' E@yslzsly = vl

Proof
The Theorem is a direct consequence of the following Lemma.

Lemma 21 Letc;;, denote the covariance between columiadk, pf = (1/m;) Zi:yi:b x; and
p = m, /m. Suppose that € F, andk € F,. Then as long as

e > p(L—p)- (S —py) - (ufh — ) (98)

there always exist € S, such thatp;.. < pji, whereks denote column variablé shuffled
according tos in the correspondingp.

Proof Let us denote for short; € R™ the ;" feature column. We have because of the fact that
i = i anduge = vy, (v, being the variance):

1

T
Piks — Pjk = /T8 : (Cj (Mc - Im) ck) ) (99)

whereM_ is the shuffling matrix of permutation Matrix M. — |,,, has only four non-zero coordi-
nates: in(¢, ¢) and(¢', (') (both—1), and in(¢, ¢') and(¢', ¢) (both1), so we get:

1
Piks =Pk = — Ujvk'(xéj(xé’k_xék)+xé’j(x€k_l'é’k))
1
_ . g —xn . 100
NG (e — 2oj)(Tok — T0k)) (100)

Hence,p;ic < pjx iff the sign of z,; — z,; is the same as the sign of;, — zy;. Lett°(¢) the
predicatep;,s > pji, for any elementary permutatiane S}, that changegto index?’ of the same
classh (s(¢) = ', c(¢") = ¢). If () is true, then, averaging over all such permutations, weimbta

1 1
0o > — —E 20 — b (b — b
el N ~ (( lj Z])( Lk 14 k))
1 b b b b b b b
S . . — bt — >0
NI (Wﬂék Tyl — Typlly M]k)
1 b b b\(,.b b
N (5 + (g — p3) (g, — 1)

39



i.e. we have:
(wg; — 15) (e — ) >~y - (101)

Assume now that’(¢) holds over any € [m,]. As long as?, is strictly positive, we thus obtain,
averaging ineq[(101) over dle [my),

, 1
C?'k = . 2(932] - u?)(x’ék - MZ)
by
< ¢
> ik
< 0, (102)

a contradiction. Hence, as long dg > 0, there must exist/, ¢') € i," such that the elementary
permutation;(¢) = ¢, ¢(¢') = (¢ satisfies

S < (103)
and this holds fob € {—, +}. Now remark that
cit = P+ (L=p)py, — (ppy + (1 —p)pg ) (o + (1= p)py.)
= pcj+ (1 =p)cg +p(1—p) (= w3 )l — 1) (104)

and so as long as whicheve;@ > 0orcy > 0, we can always find an elementary permutation
that decreases the one chosen. When no more elementarytptomsiachieve that,, < p(1 —
p)(k; — py ) (g — ), which yields the statement of the Lemma. |

To prove the Theorem, remark that

e — propas — 1 1 3 (x Cia ) ; ( pafy e )
13 — M12/23s  — —_ il T T T2 )3 - — C12
£/ U1U3 m - (%) <@ v/ U1U3 V24/V1U3

)

1 1 C12 Ci242
— —_— i1 — —— Ay i - - 105
oo (m % (93 1 " x 2) Le(i)3 (Ml Vs ) Ms) ( )

We apply Lemma 21 to linearly transformed colurin= ¢, — “2¢, and columne; and obtain
that as long as

p(1—p) + - C12 , 4 - + _
B - D R _ 106
P13 — P12p23 - ((m 1) - (g —pg) | (u3 —p3) (106)

there always exist a block-class elementary permutatitiat is going to make s« — p1apese <
P13 — p12p23- When no such permutation exist anymore, we have, lettirdenote the composition
of all elementary permutations performed so far anét arg maxceg: p33,

P13 — P12P23 < P13 — P12pP23
VI=0V1T =03~ V1= 0%/1— pise
p(1 —p)

Vi — Gy /vavs — ..

. (1}2(,@r —py) — 012(,115r - N;)) (N; — i3)

_p(l-p) (MT—MI _plz_/i;_/iz_)‘,u;_ﬂg (107)
1—e€ \/ﬂ \/@ \/53
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as long as?, < (1 — e)v vy andcz,.. < (1 — €)vyvs. We just have to use the fact that

+ —
- Hj — 1y
pj = —— (108)
J 'Uj
using the main file notation to conclude (End of the proof oéditen{2D). [

Remark that the proof also shows that the conditions to blewha type-Il error (Corollary 2.1 in
[6]) are not affected by ther. To see that it is possible to still make the Type Il error hlaw, in
the CM model, the Type Il error can be made at |ddgv, [6] where the coefficienk” does not
depend onr ([6], Corollary 2.1). Since, is also not altered by the permutations, the Type Il error
can still be blown up following [6]'s construction.

We now show that the iterative process is actually not necgssone has enough data: sam-
pling¢ ~ S;, jamsp(13+).2 Up to bounds competitive with Theoréml 20 with high prob&pilsuch
good concentration results also hold fesic [36].

Theorem 22 For any§ > 0, providedm = Q((1/6)log(1/6)), the uniform sampling of in S,
satisfies

Pevs: [passye < Z+08]>1-0
whereZ is defined in Theorem R0.

Proof We detail first the sampling process af It relies on the fundamental property that a
permutation uniquely factors as a product of disjoint cygcknd so a block-class permutation
factors uniquely as two permutations and¢_, each of which acts in one of the two classes.
Therefore, sampling uniformly each of and¢_ results in an uniform sampling of a block-class
(¢

The Theorem stems from the following Lemma, whose notatiolisv Lemmal21.

Lemma 23 For anyq > 0, as long as

m = Q(llogl) , (109)
q q

there is probability> 1 — ¢ that a randomly chosen block-class permutatiahall bring

ciws € [p(L—p)(uf — p) (it — pp) — a,p(1 = p) () — 13 ) (i — pi) +4q] - (110)

Proof Let S’ c S denote the set of block-class permutations whose set of figeds contains
all examples from clasg b1, Vb € {—, +}. We have

b b
§NSb [Z xl] g(l ] = Mplifly

Ly,

and since1/my) 37y, _, 222y, — p5 = ¢y, if we sample uniformly at random~ 537, then
we get from[5] (Proposmon 1.1):

b b
Z % g(l — Mpfh; [
Ly=

2
< 2ep (- ) (111)
4,uj,uk+2t

P§~S;*,f’[|cs'k<‘ = t] = gNS;;f’ [ > mbt]
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We want the right hand side to be no more than segnequivalently, we want
2 2 2 2
tz—(—log—)t——log— > 0, (112)

which holds provided

2(1+ o(1)) 1og3 | (113)

t
my, 0

where the little-oh is measured wit,. Since a block-class permutation factors as two fully de-
termined permutations frorft and S’ if we fix 0, = §_ = 4/2, we get that if we sample
uniformly at random these two permutations~ S*" ands_ ~ S, then we shall have simulta-
neously

201 o(l) 1og§ Whe {— 4} . (114)

|C?'k<| <
which implies for the factored permutatign
lejee = p(L = p)(pj — 17 ) (i — )| <

= TR g = (115)
m

from eq. [104). Hence, if

1 1
m = Q(glogg) , (116)

there will be probability> 1 — & thatc. is within additived from p(1 — p) (1] — ;) (1 — )
|

We get that with probability> 1 — 8, a randomly chosen block-class permutatiahall make

S - S 1 - + - n + - 5 + - o
pizs = P12pa3 < pl-p) (ul e u2> M s 117
V1= /T = i 1—e NG NG Vs
and the Theorem is proven (End of the proof of Thedrem 22). [

7.3 Appendix — Experiments
7.3.1 Domains and setup

Domain characteristics are described in Table 3. In pdaicthe process for train/test split is there
given in detail for each dataset. Some domains deserve roorments.

Similarly to [16], we consider only two features of thbalonedatasets; those arangs (the
age) andength which are provably causally linkedage causedength-, and hence correlated.
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name | m® | d | source | notes
digoxin 35 2 [7] features are cond. independent given label
glass 146 9 UCI
abalone-2D | 200, 567| 2 UCI, [16] | subsample, {rings, length} predict diameter
synthetic 200 13 | scikit-learn
heart 270 13 UClI

liver disorders| 345 7 UCI, [23] | predict mcv< 30" percentile, taskai r 0034

ionosphere 351 34 UCI
predict mpg< mean, taskai r 0016
auto+mpg 398 8 uCl, [23] (feature vectors with missing values removed)
arrhythmia 452 279 | UCI, [23] | taskpai r 0023, missing values replaced by 0
breastw 683 10 UCl
australian 690 14 UCl

diabete(-2) 768 8 UClI

Pima domain (-2 = tasgai r 0038, [23],
half of the dataset used for training)

Table 3: Domains considered:) When only one number appears in the column, 1/mofvas
hold out at random for test; when two numbers are presenfjrittas training set size, while the
second is test size, that is fixed by the dataset description.

We predict the attributéiameter(reasonably caused kage as well); to turn this into a binary
classification problem, we classify if trddameteris above or below the average one. (We also
exclude abalone examples which have missiegattribute.) For the experiments, we train with
200 examples and held 0G67, both picked at random. Thiigoxindomain [7] is already defined
by only two featuresgligoxinandurine, which are conditionally independent givereatine From
those, we predict if the level afreatineis above or below average. Domains Liver disorder,
Auto+MPG, Arrhythmia and Diabete are part of the benchmédoonains of [23].

Thesynthetiddataset is generated by the functobeit aset s. nake_cl assi fi cati onof
the scikit-learnpython library [31], with6 features3 informative for the class prediction, aid
more that are linear combinations of the formers. The ratiofthis toy domain is to craft two
feature subspaces highly correlated.

All training sets are standardized, and the same transtaymis then applied to the respec-
tive test sets. The partition of the feature space is defiryethd first splitF" = |d/2], and its
complement; features are taken in the order defined by tlze ekt

Unless stated differently, models are trained withregularisation byscikit-learris
I i near _nodel . Logi sti cRegressi on. The hyper-parametex is optimized by 5-folds
cross validation on the grifll0=5, 1074, ..., 10%}.

7.3.2 Explanation of the movie

Along with this SM comes a movie displaying the impact on thealue ofDT, in the context of
the decrease of thesic. The movie shows 200 iterations bf on the Abalone2D domain, along
with the modification of the point cloud (classes are red £hltrhep-value is indicated. Notice
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Figure 4: Crop of the movie (see text for explanation).

that is begins at value 0 up to 13 digits beforestarts. The two lines indicate the classifier learnt
over the current data (plain gold line) and compare with thigai classifier learnt over the data
before runningpT (dashed gold line). The big number (167 in Figuke 4) is theatten number.
Finally, the polygon displayed is the convex envelope ofitliteal data.
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7.3.3 Complete experimental results

0.7,
0.6
0.5]
0.4

0.1

Digoxin

(i S S
02— y

0.0

0 5

10 15 20
# elem permutations

Data optimisation

25

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Digoxin

0.7
0.6\ — p!’]I-I’ISk
— discrepancy
0.5 HSIC (right)
0.4 p-value (right)
0.3 testerror | __ |
02 ]
0.1
0'00 5 10 15 20 25

# elem permutations

HSIC reduction

1.0

0.8

0.6

0.4

0.2

0.0

Table 4: Results on domain Digoxin. Left: Data optimisatioght: HsIC reduction. Color codes

are the same on all plots. See text for details.
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0.7 Glass 1.0 07 Glass 1.0

e ——————
0.6 0.8 0.6 A 0.8
. 0.5 L/'\

hi-risk
06 g4 P! 0.6
discrepancy
[l B Sl 0.4 0.3 right)  t===-- Rebeleleleble 0.4
= 0.2 p-value (right)
0.2 test error 0.2
0.1 0.1 /.. test error*
0'00 20 40 60 80 100 0.0 0'00 20 40 60 80 100 0.0
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 5: Results on domain Glass. Left: Data optimisatigtr HsIC reduction. Color codes are
the same on all plots. Color codes are the same on all plogsteSefor details.

0.7, Synthetic 1.0 07 Synthetic 1.0
0.6 0.6 —_ phI-I‘ISk
0.8 — discrepancy 0.8
0.5 0.5 — HSIC (right)
04 0.6 g4 — p-value (right) |{0-6
test error
0.3 o~ 0.3
0.4 --- test error* 04
0.2 I 0.2
0.2 0.2
0.17 1o a1 S, Sotoielieiniiele 0.1 15 == Pt — gL LLLLLLL L
uary o
0'00 20 40 60 80 100 120 140 0.0 0'00 20 40 60 80 100 120 140 0.0
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 6: Results on domain Synthetic. Left: Data optimgsgtright: HsIC reduction. Color codes
are the same on all plots. Color codes are the same on all Sle¢stext for details.

0.7 Heart 0.7 Heart 1.005
1.000 0.6“ — p.hl'nSk 1.000
— discrepancy
0.5 — HSIC (right) 0.995
0995 o.4fl — p-value (right) 0.990
0.990 0~  —— 0.980
0.1 0.975
LA 0.985
0'00 50 100 150 200 0'00 50 100 150 200 0.970
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 7: Results on domain Heart. Left: Data optimisatight HsIC reduction. Color codes are
the same on all plots. See text for details.

46



0.7 lonosphere 1.0 0.7 lonosphere 1.0

0.6 09 o0.6l) " Phirisk 0.9
— discrepancy
0.5 0.8 0.5 —= HSIC (right) 0.8
0.4 0.7  0.4f — p-value (right) 0.7
03 06 0.3 test error 0.6
--- test error*
0.2
0.1/ =
0'00 50 100 150 200 250 03 0'00 50 100 150 200 250 03
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 8: Results on domain lonosphere. Left: Data optinosatight: HsIC reduction. Color
codes are the same on all plots. See text for details.

0.7 Abalone2D 5 0.7 Abalone2D 1.0
0.6 phl—rlsk
4 discrepancy 0.8
0.5 HSIC (right)
0.4 3 p-value (right)|10-6
test error
0.3
2 --- test error* 0.4
0.2
1 Ul 1] fo2
ol iewrs OO O e i =
0'00 50 100 150 20% 0'00 50 100 150 20%0
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 9: Results on domain Abalone. Left: Data optimisati@ht: HSIC reduction. Color codes
are the same on all plots. The scale of thealue curve is not the same as in the main file: here,
its scale is the same as for thsic curve, which explains why it seems to be flat while the value
for the first iterations is the zero-machine and the valuethi® last exceed one per thousand. See
text for details.
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0.7 Breastw 1.8 0.7 Breastw 1.0

0.6l 1.6 0.6 — phi-risk
1.4 — discrepancy 0.8
0.5 12 09 — HSIC (right)
0.4 1.0 0.4 { —  p-value (right)|10-6
0.3 0.8 0.3 I test error 0.4
--- test error* :
0.6
0.2 0.2 “
0.4 | U 0.2
0.1 1 0.2 0.1
- ——— T e T R e e rre e e e e
0'00 100 200 300 400 500 0.0 0'00 100 200 300 400 500 0.0
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 10: Results on domain BreastWisc. Left: Data optitiosaright: HsIC reduction. Color
codes are the same on all plots. See text for details.

0.7 Australian 1.2 Australian 1.0
0.6 10 .hl-rISk 0.9
’ — discrepancy
0.5 0.8 Sfl — HSsIC (right) 0.8
0.4 4]l — p-value (right) 0.7
0.6
03 tect oror® 06
0.2 0.4 0.5
mmmmmmn o IR T o T T T LT T P o ey |
0.1 "t 0.2 o 0.4
0'00 100 200 300 400 500 0.0 100 200 300 400 500 03
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 11: Results on domain Australian. Left: Data optiniigg right: HsIC reduction. Color
codes are the same on all plots. See text for details.

0.7 Diabete 1.2 0.7 Diabﬂete _ 1.0
10 0.6 —_— phI-I‘ISk
— discrepancy 0.8
0g 95 — HSIC (right)
0.4 — p-value (right) 0.6
0.6
0.3 test error 0.4
0.4 --- test error* :
. 0. 2Ff R
0.2
0.1 02 o1
0'00 100 200 300 400 500 60(9'0 0'00 100 200 300 400 500 60(?'0
# elem permutations # elem permutations
Data optimisation HSIC reduction

Table 12: Results on domain Diabete_scale. Left: Data aogdition; right:HsIC reduction. Color
codes are the same on all plots. See text for details.
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c E 0.06 Synthetic E 0.0 Heart E 0.08 Australian E 0.12 Glass
= g 20.07 20.06] 2
T 004 " 0.06| P £ 0.08
0 o 4] & 0.05 9
=g S 0.05| o <
g 003 004 30.04| 3 0.06]
= 3 3 0.03) 3
= S0.02 3 0.03] 3 3 0.04]
Q 5 ©0.02 ©0.02 °
O  £o.01 % % £ 0.02]
= & 0.0 & 0.01 &
T 5o §0.0 §0.0 §0.0
E 2 20 40 60 80 100 120 140 2 50 100 150 200 e 100 200 300 400 500 2°%0 20 40 60 80 100
3 3 # elem permutations 3 # elem permutations 3 # elem permutations #* # elem permutations

Table 13: Number of odd cycles (excluding fixed points, ndized bym) for the data optimiza-
tion experiments in Tablg 1.
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7.3.4 Comparisons of block-class vs arbitrary permutatios

We now compar®T as in Algorithn1 to the one where we relax the constraint pleatutations
must be block-class (implying the invariance of the meanatpe). See Tablds 14, 115. The results
are a clear advocacy for the constraint, as relaxing it srpapr results, from both the-risk and
test error standpoints.
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0.7 Digoxin 0.7 Digoxin

0.6 — phi-risk
' — discrepancy
0.5 test error
0.4 --- test error*
0.3 e ,—-...\ ...........
—
0.2 S
0.1 e
0'00 5 10 15 20 25 0‘00 5 10 15 20 25
# elem permutations # elem permutations
*
MeS: MeS,,
0.7 Glass 0.7 Glass
0.6 — phi-risk 0.6
’ — discrepancy '
test error 0.5
test error*

0.1 0.1
0'OO 20 40 60 80 100 0'00 20 40 60 80 100
# elem permutations # elem permutations
*
MeS) MeS,,
0.7 Synthetic 0.7 Synthetic
0.6 — phi-risk 0.6
’ — discrepancy '
0.5 test error 0.5
0.4 test error* 0.4
0.3 0.31 l m M
0.2 0.2
//—N\
0.17 =327 Fhes = ittt N1 S abEEEEE il Lo | b
ugy
0.0 0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
# elem permutations # elem permutations
ES
MeS; MeS,,
0.7 Heart 0.7 Heart
0.6 — phi-risk 0.6
’ — discrepancy '
0.5 test error 0.5
0.4 --- test error* 0.4
0.3 0.3 ||
0.2 / 0.2 //_/—"_
s D e E mmmmmmmmsssmmmmmm———--— .....,(. ........................... -
0.1 0.1
0.0 LA 0.0
0 50 100 150 200 0 50 100 150 200
# elem permutations # elem permutations
ES
Me S, M e S,

Table 14: Comparison, for data optimisation, of algoritbmin which elementary permutation
matrices are constrained to be block-class (left), motttonstrained to be block-class (right).
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- 0.7 lonosphere N 0.7 lonosphere
0.6 — phi-risk 0.6
' — discrepancy '
0.5 test error 0.5
0.4 --- test error* 0.4
0.3
0.2
0. LA Bl M ook N eV
0.0 0.0
0 50 100 150 200 250 0 50 100 150 200 250
# elem permutations # elem permutations
%
B Me S s M e S, B
0.7 Abalone2D 0.7 Abalone2D
0.6 — phl—rlsk 0.6
— discrepancy
0.5 test error 0.5
0.4 --- testerror* 0.4
0.3]
0.2
| 0. e
0'00 50 100 150 200 O'00 50 100 150 200
# elem permutations # elem permutations
*
MeS: MeS,,
0.7 Breastw 0.7 Breastw
0.6l — phi-risk 0.6
' — discrepancy '
0.5 test error 0.5
0.4 --- test error* 0.4
0.3 0.3
0.2 0.2
oi| |} 0.1 =T I
0.QF T e (0] Aok bbb
0 100 200 300 400 500 0 100 200 300 400 500
# elem permutations # elem permutations
ES
MeS; MeS,,
0.7 Australian 0.7 Australian
0.6 — phi-risk 0.6
' — discrepancy '
0.5 test error 0.5
0.4 --- test error* 0.4
0.3
0.2
0.1....’.:_._...—-¢=ﬁ ....................
0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500
# elem permutations # elem permutations
*
MeS; MeS,,

Table 15: Comparison (cont'd), for data optimisation, @althm DT in which elementary per-
mutation matrices are constrained to be block-class (leftjynot constrained to be block-class

(right).
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