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Abstract

It is usual to consider data protection and learnability as conflicting objectives. This is
not always the case: we show how to jointly control causal inference — seen as the attack —
and learnability by a noise-free process that mixes training examples, the Crossover Process
(CP). One key point is that theCP is typically able to alter joint distributionswithout touch-
ing on marginals, nor altering the sufficient statistic for the class. In other words, it saves
(and sometimes improves) generalization for supervised learning, but can alter the relationship
between covariates — and therefore fool statistical measures of (nonlinear) independence and
causal inference into misleadingad-hocconclusions. Experiments on a dozen readily available
domains validate the theory.
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1 Introduction

There are at least two good reasons to alter the learning sample of a supervised learning prob-
lem. One is to help the process of learning: feature bagging [20, 37], importance weighting in
features, boosting [28], denoising autoencoders [41], independent noisification, dropout [40], all
are methods that optimise the presentation of examples to a learner with the objective to improve
its generalisation abilities. The second is privacy, a growing concern in the public sphere [3, 9, 12].
Two leading mechanisms for the private release of data are differential privacy andk-anonymity
[8, 9, 27, 38]. They guaranteeindividual levelprotection,i.e. identifiability, and rely on low-level
modifications, typically touching marginal distributions, mostly with noise.

Nevertheless, as pointed out in [3], "even when individualsare notidentifiablethey may still
bereachable[...] and subject toconsequential inferencesand predictions taken on that basis". The
reference is to the possibility of performingcausal inference attacksby a malicious agent willing
to uncovercausal relationships, or even just measurestatistical independence, between sensitive
covariates. In supervised learning, the task is the prediction of a single feature, yet the total number
of observation variables available for the task is blowing up in mainstream datasets. Each subset of
these observation variables is a potential target for attacks, and even when true causality is some-
times considered "a research field in its infancy" [12], it ishard to exaggerate the recent burst in
causal inference techniques [6, 7, 14, 15, 16, 17, 21, 23], aswell as the threats this may pose on
privacy [2, 3, 9, 19]. For example, in a medical diagnosis data which gives a sickness state as a
function of genetic, behavioural, habits and infection history, we may want to make causal infer-
ence between specific traits and behaviour harder, or we may want to hide gender-prone infections
[32], whilemaking sure that the utility of the dataset for predicting the sickness state remains unal-
tered. Ultimately, rather than making it harder, we may justlook to reversethe observable causal
direction between specific observation variables, and thereby fool causal inference or causal rule
mining into misleadingad-hocconclusions. In short, we target two different levels: the dataset’s
utility for the black-box supervised prediction task remains within control, but it is surgically al-
tered against fined-grained specific causal inference attacks among features.

As we show, this task is within reach. Even when coping with the level of protection to statisti-
cal independence and causal inference attacks may require wrangling the complete data, this may
be done with a tightexplicit control of its utility for supervised learning, and it may even yield
bettermodels for prediction. Although counterintuitive, this last fact should not come with great
surprise considering the success of sophisticated noisification methods,e.g. dropout, to enhance
learning.

— This is our main contribution: to achieve our two goals, we introduce the (single-point)Crossover
Process, CP. An analogy may be done with the biological crossover: a population of DNA strands
gets mixed with a crossover, but there is a single zone for chiasma (i.e. contact point) for the whole
population. In the same way as DNA strands exchange genetic material during recombination,
feature values get mixed between observations during aCP , although in a more general way than
in genetic recombination. The key to learning is that theCP may be done without changing the
sufficient statistic for the class, nor touching class-marginals. The key to interfering with measures
of independence and causal calculus is that theCP is able to surgically alter joint distributions. Our
contribution is therefore twofolds: (i) we introduce theCP and show how it drives the generalisa-
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tion abilities of linear and non-linear classifiers by the introduction of a new statistical complexity
measure, the RademacherCP complexity (RCP). We show that theRCP can be very significantly
smaller than the standard empirical Rademacher complexity, thereby being a lightweight player —
and a tractable knob — for generalisation. Then, (ii) we showhow the components of aCP may be
chosen to alter the powerful Hilbert-Schmidt independencecriterion [15], how it may be devised
to blow-up causal estimation errors [6], and finally how it can interfere with identifiable causal
queries on a causal graph in thedo calculus framework [30, 35].

Organisation of the paper— Section§2 gives general definitions.§3 presents the Crossover
Process and its relationships with learnability.§4 shows the impact of theCP on measures of
independence and causal queries.§5 details related experiments. A last Section discusses and
concludes. An Appendix, starting page 17, provides all proofs, additional results and experiments
performed. A movie1, presented in Subsection 7.3.2, shows the effects of theCP on a popular
domain for causal discovery [16].

2 General notations and definitions

Learning setting — We let [m]
.
= {1, 2, ..., m} andΣm

.
= {σ ∈ {−1, 1}m}. X ⊆ Rd is a domain

of observations. Examples are couples (observation, label) ∈ X × Σ1, sampled i.i.d. according to
some unknown but fixed distributionD. We denoteF

.
= [d] the set of observation attributes (or

features).S .
= {(xi, yi), i ∈ [m]} ∼ Dm is a training sample of|S| = m examples. For any vector

z ∈ Rd, zj denotes its coordinatej. Finally, notationx ∼ X for X a set denotes uniform sampling
in X, and the mean operator isµS

.
= E(x,y)∼S[y · x] [29].

In supervised learning, the task is to learn a classifierH ∋ h : X → R from S with good gen-
eralisation properties, that is, having a smalltrue riskE(x,y)∼D[L0/1(y, h(x))], with L0/1(z, z

′)
.
=

1zz′≤0 the 0/1 loss (1. is the indicator variable). In general, this is achieved by minimising overS a
ϕ-risk E(x,y)∼S[ϕ(yh(x))] = (1/m) ·

∑

i ϕ(yih(xi)), whereϕ(z) ≥ 1z≤0 is asurrogateof the 0/1
loss. In this paper,ϕ is any differentiable proper symmetric (PS) loss [26, 29] (symmetric mean-
ing that there is no class-dependent misclassification cost). The logistic, square and Matsushita
losses are examples of PS losses. SetH is a predefined set of classifiers, such as linear separators,
decision trees, etc. .
Matrix quantities — The set of unnormalised column stochastic matrices,Mn ⊂ R

n×n, is the su-
perset of column stochastic matrices for which we drop the non-negativity constraint, thus keeping
the sole constraint of unit per-columnsums. We letSn ⊂Mn denote the symmetric group of order
n. For anyA , B ∈ Rn×n andM ∈Mn, we let

〈A , B〉M
.
= tr

(
(In − M)⊤A(In − M)B

)

denote thecentered inner productof A andB with respect toM . It is a generalisation of the cen-
tered inner product used in kernel statistical tests of independence [14], for whichM = (1/n)11⊤.

Without loss of generality, we shall assume that indices inS cover first the positive class:
(yi = +1 ∧ yi′ = −1) ⇒ i < i′. A key subset of matrices ofRm×m consists of block matrices
whose coordinates on indices corresponding to different classes inS are zero: block-class matrices.

1Available athttp://users.cecs.anu.edu.au/∼u5647716/cp/abalone_movie.mp4
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Definition 1 A ∈ R
m×m is a block-class matrixiff (yi · yi′ = −1)⇒ A ii′ = 0, ∀i, i′.

An asterisk exponent in a subset of matrices indicates the intersection of the set with block class
matrices, such as forM∗

n ⊂Mn andS∗
n ⊂ Sn. Finally, matrix entries are noted with double indices

like M ii′ ; replacing an index by a dot, “.”, indicates a sum over the index, like M i.
.
=
∑

i′ M ii′ .

3 The Crossover Process and learnability

The Crossover process (CP) transformsS in two steps: the split and the shuffle step. In the split
step, a bi-partition of the features setF is computed:F = Fa∪Fs. Fa is theanchor set andFs is the
shuffle set. To perform the shuffle step, we need additional notations. Without loss of generality,
we assumeFa

.
= [da] andFs

.
= {da + j, j ∈ [ds]}, da > 0, ds > 0, da + ds = d. So,Fa contains the

first da features andFs contains the lastds features. LetId be the identity matrix, and[Fa|Fs] = Id
a vertical block partition whereFa ∈ Rd×da (Fs ∈ Rd×ds) has columns representing the features of
Fa (Fs) — we use notation[.] both for integer sets and block matrices without ambiguity.Finally,
we define the (row-wise) observation matrixS ∈ Rm×d with (S)ij

.
= xij . Let1i be theith canonical

basis vector.

Definition 2 For any block partition[Fa|Fs] = Id and anyshuffle matrix M ∈Mn, the Crossover
processT

.
= CP(S; Fa, Fs, M) returnsm-sampleST such that its observation matrix isSM .

=
[SFa|MSFs], and each exampleST ∋ (xM

i , yi)
.
= ((SM)⊤1i, yi).

We considerM fixed beforehand. Figure 1 (top) presents theCPon a toy data withM a permutation
matrix. Figure 1 (bottom) presents another example withM block-uniform.
Learnability — We now explore the effect of theCP on generalisation. We need two assumptions
onH andϕ. The first is a weak linearity condition onH:

(i) ∀h ∈ H, ∃ classifiersha, hs overFa,Fs s. t.h(x) = ha((Fa)⊤x) + hs((Fs)⊤x).

(Fs)⊤x picks the features ofx in Fs. Such an assumption is also made in the feature bagging model
[37]. Any linear classifier satisfies (i), but also any linear combination of arbitrary classifiers,each
learnt over one ofFa andFs. We letHs denote the set of allhs. The second assumption postulates
that key quantities are bounded [4]:

(ii) 0 ≤ ϕ(z) ≤ Kϕ, ∀z and|hs((Fs)⊤x)| ≤ Ks, ∀x ∈ X, ∀hs ∈ Hs.

Let RS(H)
.
= Eσ∼Σm

[suph∈H |(1/m) ·
∑

i σih (xi)|] be the empirical Rademacher complexity
of H. Additionally, we coin the RademacherCP complexity,RCP.

Definition 3 The RademacherCP complexity (RCP) ofH with respect toT
.
= CP(S; Fa, Fs, M) is:

RCPT (H)
.
= Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σi

(
h((SFs)⊤1i)− h((MSFs)⊤1i)

)

∣
∣
∣
∣
∣

]

. (1)

Notice that theRCP is computed over the shuffle set of features only, and(SFs)⊤1i = (Fs)⊤xi.
The next Theorem expresses a generalisation boundwrt theCP.
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Figure 1: Top: example ofCP with M a block-class permutation matrix (the two blocks are in
bold). Bottom: toy domain whered = 3, but all examples have zeroz-coordinate (not shown). The
CP uniformly mixes examples by class. The domain consists of two spirals (red for positive, green
for negative examples) withD = uniform distribution. Arrows depict respectively the optimal
direction (black), and the directions learned by minimizing ϕ = square loss overS (light green,
"ex") andST (blue, "CP"). The right plot displays test errors (y-scale) on uniform sampling of
datasets of different sizes (x-scale). The effect of theCP is to produce inST twodistinct examples
thataveragethe positive / negative examples, and yield a better approximation of the optimum.

Theorem 4 Consider anyH, ϕ and splitF = Fa ∪ Fs such that(i) and(ii) hold. For anym and
anyδ > 0, with probability≥ 1− δ over i.i.d.m-sampleS, we have:

ED

[
L0/1(y, h(x))

]
≤ EST [ϕ(yh(x))] + RCPT (H) +

4

bϕ
· RS(H) + (2Kϕ +Ks) ·

√

2

m
log

3

δ
,

for every classifierh and everyT
.
= CP(S; Fa, Fs, M) such thatM ∈ M

∗
m. Here, bϕ > 0 is a

constant depending onϕ.

(proof in Subsection 7.2.1) Notice that Theorem 4 requires that M is a block-class matrix. A key
to the proof is the invariance of the mean operator:µS = µST . Theorem 4 says that a key to good
generalisation is the control ofRCPT (H). We would typically want it to be small compared to
the Rademacher complexity penalty. The rest of this Sectionshows that (and when) this is indeed
achievable.

Upperbounds onRCPT (H) — We consider different configurations ofH and / orT :

Setting (A): Classifiershs andha in (i) above are linear;
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Setting (B):M ∈ S∗
m.

The following Lemma establishes a first bound onRCPT (H).

Lemma 5 if T satisfies the conditions of Theorem 4, thenRCPT (H) ≤ 2 · RS′(Hs), for S′ .
=

(Im − M)SFs in Setting (A), andS′ .
= SFs in Setting (B).S′ is the row-wise observation matrix of

S
′.

Proof (Sketch) Consider for example Setting (B). In this case, recalling that(SFs)⊤1i = (Fs)⊤xi

and lettingς : [m] → [m] denote the permutation thatM represents, we have because of the
triangle inequality:

RCPT (H) = Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σi

(
h((Fs)⊤xi)− h((Fs)⊤xς(i))

)

∣
∣
∣
∣
∣

]

(2)

≤ Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σih((F
s)⊤xi)

∣
∣
∣
∣
∣

]

+ Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σih((F
s)⊤xς(i))

∣
∣
∣
∣
∣

]

= 2 · RS′(Hs) ,

as claimed. The case of Setting (A) follows the same path.

Lemma 5 says thatRCPT (H) is at most twice a Rademacher complexity over theshuffle set. This
bound is however loose since many terms can cancel in the sum of eq. (2), and the inequality does
not take this into account. In particular,

Theorem 6 Under Setting (A), suppose anyhs is of the formhs(x) = θ⊤x with ‖θ‖2 ≤ rs, for
somers > 0. Let Ks .

= SFs(SFs)⊤. Then∃u ∈ (0, 1) depending only inS such that for any
M ∈Mm,

RCPT (H) ≤ (urs/m) ·
√

〈Im, Ks〉M . (3)

Notice thatKs is a Gram matrix in the shuffle feature space. The proof technique (Subsection 7.2.3)
relies on a data-dependent expression foru which depends on the cosines of angles between the ob-
servations inS. It can be used to refine and improve a popular bound on the empirical Rademacher
complexity of linear classifiers [18] (we give the proof in Theorem 15 in the Appendix). We now
investigate an upperbound on Setting (B) in which classifiers in Hs are (rooted) directed acyclic
graph (DAG), like decision trees, with bounded real valued predictions (say,Ks > 0) at the leaves.
Each classifierhs defines a partition overX. We letHs

+ be the subset ofHs in which all leaves
have in absolute value the largest magnitude,i.e., Ks. Remark that we may have|Hs

+| ≪ ∞ while
|Hs| =∞ in general.

Theorem 7 Under Setting (B), supposeHs is DAG and assumption(ii) is satisfied. Suppose that
log |Hs

+| ≥ (4ε/3) ·m for someε > 0. Then, lettingodd_cycle(M) denote the set of odd cycles
(excluding fixed points) ofM , we have:

RCPT (H) ≤ Ks ·
√

2

m
· log |Hs

+|
(1 + ε)|odd_cycle(M)|

. (4)
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(proof in Subsection 7.2.4) The assumption onH
s
+ is not restrictive and would be met by decision

trees, branching programs, etc. (and subsets). Usual bounds on the Rademacher complexity of
decision trees would roughly be the right-hand side of (4)without the denominator in thelog (see
for example [34, Chapter 5]). Hence, theRCP may be significantly smaller than the Rademacher
complexity for more “involved”CPs. The number of cycles is not the only relevant parameter of
theCP on which relies non-trivial bounds onRCPT (H): the Appendix presents, for the interested
reader, a proof that the number of fixed points is another parameter which can decrease significantly
the expectedRCP (by a factor

√

1− |fixed_points|/m), when CPs are picked at random (see
Theorem 17 and discussion in Subsection 7.2.4).

At last, we notice that Theorem 4 gives a perhaps counterintuitive rationale for theCP that
goes beyond our framework to machine learning at large:learning over aCP’ed S may improve
generalisation overD as well. By means of words, learning over transformed data may improve
generalisation over the initial domain. Figure 1 (bottom) gives a toy example for which this holds.
It is also not hard to exhibit domains for which we even have:

min
h

EST [ϕ(yh(x))] + RCPT (H) < min
h

ES [ϕ(yh(x))] . (5)

In order not to load the paper’s body, we present such an example in the Appendix (Subsec-
tion 7.2.2). Having discussed learning guarantees, we are ready to dive into applications of the
Crossover Process.

4 The Crossover Process versus statistical independence and
causality

With CP, we are able to destroy or fake statistical measures of independence and causal relation-
ships in the data. We develop two frameworks: Hilbert-Schmidt independence criterion anddo
calculus. In the former one, our results exploit the design of the shuffle matrixM to alter indepen-
dence; in the latter one, our results exploit the split step of theCP to interfere with causal inference.

The Crossover Process and measures of independence— Here, we assume thatS is subject to
quantitative tests of independence, that is, assessingU⊥⊥V for someU,V ⊂ X. We computeCPs
such thatU ⊆ Fa andV ⊆ Fs, so that theCP alters the measure of independence. One popular
criterion to determine (conditional) (in)dependence is Hilbert-Schmidt Independence Criterion [7,
14, 15].

Definition 8 Let U ⊂ [d] andV ⊂ [d] be non-empty and disjoint. LetKu and Kv be two kernel
functions overU and V computed usingS. The (unnormalised) Hilbert-Schmidt Independence
Criterion (HSIC) betweenU andV is defined asHSIC(Ku, Kv)

.
= 〈Ku, Kv〉(1/m)11⊤ .

(We choose not to normalise theHSIC: various exist but they mainly rely on a multiplicative factor
depending onm only, so they do not affect the results to come.) The choice ofM in theCP directly
influences the value the result ofHSIC; therefore, we can design a search strategy aimed to alter it.
Our first result shows that this is also algorithmic friendly: (a) while storing kernels requiresO(m2)
space, controlling the evolution of theHSIC requires onlylinear-space information about kernels,
and (b) this information can be computed beforehand, and canbe efficiently approximated from
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low-rank approximations of the kernels [1]. Hereafter, we restrict ourselves to the scenario of the
decreaseof theHSIC, yet all our results would apply to the opposite polarity forthe modification.
We use for sake of readability the shorthandHSIC for HSIC(Ku, Kv).

Theorem 9 Let HSIC and HSICT denote theHSIC before and after applying theCP T to S. Let
ũ

.
= (1/m)

∑

i λi(1
⊤ui)ui, ṽ

.
= (1/m)

∑

i µi(1
⊤vi)vi, where{λi,ui}i∈[d], {µi, vi}i∈[d] are re-

spective eigensystems ofKu andKv. Then

HSICT < HSIC iff ũ⊤(Im − M)ṽ < 0 .

(proof in Subsection 7.2.5) In the following Theorem, we composeCP processes withT different
elementary permutation shuffling matrices. Notice that since the composition of permutation ma-
trices is a permutation matrix, when the matrix of the final processHSICTT

is block class, Theorem
4 can be applieddirectly to HSICTT

. We also letRu,v .
= m (1− (Ku

.. + Kv
..)/(2m

2)).

Theorem 10 SupposeS is shuffled by a sequence ofT = ǫm elementary permutation (ǫ > 0) and
the kernelsKu andKv have unit diagonal. Suppose that the initialHSIC > Ru,v. Then there exists
such a sequence such thatTT satisfies

HSICTT
≤ R

u,v + α · (HSIC−R
u,v) ,

whereα
.
= exp(−8ǫ).

The proof (Subsection 7.2.6) states a more general result, not restricted to unit diagonal kernels.
Theorem 10 is a worst-case result: some sequences of permutations may be much more efficient
in decreasingHSIC. If we compare this bound to Theorem 3 in [15], thenRu,v may bebelowthe
expectation of theHSIC, and so Theorem 10 guarantees efficient jamming of dependence.

Remark: it is in fact possible to kill two birds with one stone, namely trick statistical tests
into keeping independenceand then incur arbitrarily large errors in estimating causal effects. Our
basis is the Cornia-Mooij (CM) model [6] (see Appendix, Subsection 7.2.7) which, for space con-
siderations, we defer to the Appendix as well as for how we canuse theCP to achieve both goals.
One interesting feature of this particular causal graph is that it is so simple that it may be found as
subgraph of real-world domains, thus for which the results we give would directly transfer.

The Crossover Process and causal effects— We now consider the case where the causal directed
acyclic graph is known, and the goal is to interfere with the inference of causal effects between
covariates. The key challenge for causal inference is the existence of confounding variables that
are causes of both the exposure and outcome variables. For example, suppose impact of hormone
replacement therapy on women’s health was captured by the causal DAGI → T → H, I → H,
whereI represents income,T represents taking the treatment andH is the health outcome of
interest. If wealthier women are more likely to see a doctor for treatment and also have generally
better health, thenPr[H|T ] will be more positive than the true causal effectPr[H|do(T )].

Adjusting for such nuisance or confounding variables, either by matching [13, 33] or regression
[10], is a central tool in economics and social sciences [24]. The back-door criterion [30] clarifies
which variables it is appropriate to condition on in order toachieve unbiased estimates of causal
effects. TheCP can be designed to interfere with obtaining causal estimates via such adjustments.

8



Let G = (U ∪ F,A) be a causal directed acyclic graph over observable verticesF, latent
variablesU and arcsA [30]. We are given a setQ

.
= {(xi, x

′
i), i ∈ [q]} of q causal queries, each of

which represents the estimation ofPr[xi|do(x′
i)].

An a (covariate) adjustment for a query(xi, x
′
i) is a setZi ⊂ F such thatx′

i, xi 6∈ Zi and

Pr[xi|do(x′
i)] =

∑

z∼Zi

Pr[xi|x′
i, z] Pr[z] , (6)

An adjustment is not guaranteed to exist. In our example, forthe query(H, T ), there is no adjust-
ment if I ∈ U. An adjustment is minimal iff it does not contain any other adjustment as proper
subset. Note thatZi can be the empty set.

We say that the splitFa andFs interfereswith causal inference via adjustment for a query
(xi, x

′
i) if there exists a shuffle matrixM such that the solution to (6) differs between the datasets

S andST , with T
.
= CP(S; Fa, Fs, M). We put no constraint on the magnitude of the change, so

interfering with causal queries is essentially a matter of biasing the distributions involved in the
right-hand side of (6). LetZi denote the set of minimal adjustments for query(xi, x

′
i).

Lemma 11 Let Vi = x′
i ∪ xi ∪ Zi. The splitFa and Fs interferes with causal inference via

adjustment for the query(xi, x
′
i) iff ∀Zi ∈ Zi, ∃ variablesva, vs ∈ Vi such thatva ∈ Fa and

vs ∈ Fs.

The proof is a direct consequence of eq. (6) and the fact that the shuffle matrixM alters joint
distributions between variables that do not belong to the same split set, without touching marginals.
We can always interfere with a single query(xi, x

′
i) by ensuringxi andx′

i are in different splits. To
simultaneously interfere with the set of queriesQ, we must first find the set of minimal adjustments
Zi, ∀i ∈ [q], then select a split that satisfies Lemma 11 for every query. This involves heavy
combinatorics. Enumerating the adjustments can be done with cubicdelayper adjustment [39](the
set of minimal adjustments for a given query can grow exponentially with d). The second step
subsumes the infamous Set Splitting problem [11], which isNP -Complete. In practice, causal
graphs must often be constructed by humans so this approach can still be computationally feasible
for a small set of queries. Exploring the addition of constraints on the graph (such as sparsity) to
develop more efficient algorithms is an interesting avenue for future research.

A causal query isidentifiableif we can obtain an expression for it purely in terms of distribu-
tions over the observable variablesF. The existence of an adjustment is sufficient but not necessary
for identifiability. In theory, a causal query for which we have interfered with any adjustments,
could still be identified via another approach. The Do-Calculus [30] and Identify Algorithm [35]
provide a complete framework for determining if a query is identifiable and computing an expres-
sion for it. In principle, we could utilize theCP to interfere with all routes to identifiability. This
would require an algorithm that could enumerate the expressions for a causal query. We are not
aware of such an algorithm in the literature. In practice, expressions that are not of the form of 6
are rarely used.

5 Experiments
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Algorithm 1 Crossover Learning (S, T, θ0, M0, Fa, Fs;G1, [G2])
Input SampleS, iterationsT , classifierθ0, initial CP T (matricesM0 ∈ S∗

m, [Fa|Fs] = Im);
Step 1 :for t = 1, 2, ..., T

Step 1.1 :M ← argminM ′
∈Se∗

m
G1(M ′ ◦ M t−1[|θt−1]);

// finds update of shuffle matrix
Step 1.2 :M t ← M ◦ M t−1;

// updates shuffle matrix
[ Step 1.3 :θt ← argminθ∈Rd G2(θ|M t); ]

// (optionally) updates classifier
Return classifierθT and / orCP’ed datasetST (MT )

Our applications use the same meta-level algorithm (Algorithm 1) which operates in Setting
(A) ∩ Setting (B) (M in S∗

m, linear classifiers), iteratively composing block-class elementary per-
mutations. Here,Se∗

m ⊂ S∗
m is the set of block-class elementary permutations. The iteration step

minimises a criterionG1 overSe∗
m and potentially, after the update of theCP matrix, a criterionG2

overH. The optimization ofG1 is performed by a simple greedy search in the space ofSe∗
m. The

experimental setup (a dozen readily available domains) andresults are providedin extensoin the
Appendix (Section 7.3.3); Table 1 summarises them. The split step and the choice ofFa are highly
domain and task dependent: to keep experiments of reasonable length, unless otherwise stated, we
put inFa the first half of features. In Abalone2D and Digoxin, this jams a particular ground truth
(see below). Also,ϕ=logistic loss.

5.1 Disrupting dependence and causality

General experiments— We run Algorithm 1 without step 1.3, and letG1 beHSIC. As a proof of
concept, we show that we can destroy the significance of statistical tests for independence, com-
monly as base for causal inference; in particular, we measure the change in thep-value computed
on top ofHSIC as in [15]. We use two Gaussian kernels forKu andKv, each computed over its full
subset of features (Subsection 7.3.1) — hence, we do not seekto alter specifically the dependence
between two features, but between the two sets of features defined by the anchor and shuffle sets.
On most domains (Table 1, top row), thep-value of the independence test starts close to zero at the
beginning of theCP, which implies that in general both anchor and shuffle sets are (predictably) de-
pendent. In general, we achieve a good control of theRCPand manage in several cases to decrease
the true error as well through the process.
Specific dependences— The general experiments revealed that we manage to blow-upthep-value,
even for domains for which the ground truth clearlyimplies the alternative hypothesisH1. To dive
into this phenomenon, we have considered two sets of experiments on whichHSIC is computed
over two specific features that are known to have a causal relationship. To disrupt the dependence,
we thus put one of the features in the anchor set and one in the shuffle set of features (i.e., after
we have split the feature set in two, if both features belong to the same set, we switch one with a
randomly chosen feature of the other set).

In the first set of experiments, we consider datasets withd = 2 features, so that this surgical
disruption embeds kernels measured over the complete set offeatures. Experiments are reported
in Table 1 for domains Abalone2D and Digoxin (Subsection 7.3.1). In Abalone2D for example,
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a gold standard for dependence [16], the finalp-values is more thanten billion times the initial
value. For Digoxin domain, another popular domain [7] with ground truth,p is very small at the
beginning (which corresponds to the ground truthD /⊥⊥U ; D = digoxin clearance,U = urin flow).
After shuffling, we obtainp > 0.4, which easily bringsD⊥⊥U , while ground truth isD⊥⊥U |C
(C = creatinine clearance). A rather surprising fact is that inboth cases, the effect on test error is
minimal, considering that Abalone2D and Digoxin haved = 2 attributes only.

In the second set of experiments, we consider several domains with a largerd, between 7 and
279. These domains belong to the benchmarks of [23] in which specific pairs are known to have
specific causal relationships, referred to as "causal tasks", indicated in Subsection 7.3.1. We have
targeted one causal task for each domain. Table 2 summarizesthe results obtained. In all domains,
thep-value is blown up at almost no expense in test error. Quite remarkably, the initial value is
indeedp = 0 (up tosixteendigits), while we manage at the end of the process to getp that exceeds
1‰, which would be quite sufficient to raise doubts about the causal relationships for sensitive
domains. For example, inpair0016, the finalp > 2‰ might lead us to keep the independence
assumption between horsepower and acceleration. In Arrhythmia, we would keep the (obviously
fake) independence between age and weight. In the Liver disorder domain, our experiment has the
following interesting consequence. Causal taskpair0034 is the causality relationship between
alcohol consumption and the measure of alkaline phosphatase (ALP, [23]). It is known that ALP
elevation may be caused by heavy alcohol consumption. By keeping the independence assumption
for such a value ofp, one may just discourage specific blood tests related to alcohol consumption
if they were to be designed from this domain. Again, the variation of the test error is minimal (if
any) for all these domains.

5.2 Data optimisation for efficient learning

In the previous subsection, we showed how aCP may be carried out to target directly the dis-
ruption of causal relationships. In this subsection, we analyse how (and when) it can be de-
vised to improve the test performances of classifiers. We perform Algorithm 1 with M0 = Im,
G1(M |θ) = E

ST (M )

[
ϕ(yθ⊤x)

]
(Theorem 4) andG2(θ|M) = EST

[
ϕ(yθ⊤x)

]
+ λ‖θ‖22 whereλ

is learnt through cross-validation. The algorithm returnsclassifierθT . The bottom row in Table 1,
and Appendix (Subsection 7.3.3) shows how we almost always find some permutations that reduce
the test error compared to the initial data, even when a specific data optimisation should care for
a risk of over-fitting, which seems to occur for problems witha very small number of features
(see Ionosphere and Abalone2D, Subsection 7.3.3). It appears also that when the (bound on the)
RCP flattens, it may indicate a regime where substantial reductions can be obtained on test error
as witnessed bye.g.Synthetic, Heart, Glass (see also BreastWisc in Table 10). We also remarked
that the regime where the (bound on the)RCPflattens can be associated with a peak or decrease of
the number of odd cycles as seen in Table 13, which, interestingly, can be used to provide upper-
bounds on theRCP as well (Theorem 7). Finally, the results on Glass display that some domains
(predictably) make it possible to kill to birds in one shots at little effort: in this case, theCP both
reduces the test error and increases thep-value forHSIC computed as in the general experiments
of Subsection 5.1.
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Table 1: Experiments performed withCP. Top row: reduction inHSIC task; bottom row: data
optimisation task. References to domain names are providedin Appendix, Subsection 7.3.1. “test-
error*” is test error over initial, non shuffled data. “discrepancy” is an upperbound on theRCPpro-
vided by Theorem 6. The rightmost column aggregates the information of all curves for the task in
the row, for two different domains.

6 Discussion and conclusion

This paper introduces the Crossover Process (CP), a mechanism that cross-modifies data using a
generalisation of stochastic matrices. This process can beused to cope with data optimisation
for supervised learning, as well as for the problem of handling a process-level protection on data:
causal inference attacks on a supervised learning dataset.In this case, theCP allows to release
data with spotless low-level description (variable names,observed values, marginals), substantial
utility (learnability), but disclosing dependences and causal effects under control, and thus that
could even be crafted to be conflicting with a ground truth to protect2. Note that causality in "big
data" may still be in its infancy [12], it is however rapidly growing with a variety of techniques
and lots of promises. We have chosen to focus here on two majorcomponents of the actual trends,
namely statistical measures of causal inference and causalqueries. In these two directions, there
are some very interesting and non-trivial avenues for future research, like for example the control
of combinatorial blow-up in the worst case for causal queries, ideally as a function of the causal
graph structure. There are also more applications of theCP in the field of causal discovery. Suppose
for example that description features denote transactions. Since we modify joint distributions
without touching on marginals, our technique has direct applications in causal rule mining, with
the potential to fool any level-wise association rule mining algorithms, that is, any spawn of Apriori
[21].

The theory we develop foCP introduces a new complexity measure of the process, the Rademacher
CP complexity. We do believe that theCP is also a good contender in the pool of methods opti-
mising data for learning, and it may provide new metrics, algorithms and tools to devise improved

2Note that the initial data may not be lost, as opposed to differential privacy: knowing the noise parameters does
not allow to revert differential privacy protection, whilea CP protection is reversible whenM is invertible.
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Table 2:HSIC reduction on specific causal tasks [23] (referred to aspair00XX); datasets indicated
on pictures; "pinit" is the initialp-value,0N indicating zero up toN th digit (see Table 1 for additional
notations, and text for details).

solutions that fit to challenging domains not restricted to optimizing learning or data privacy.
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7.2 Appendix — Proofs

We shall use the following notations and shorthands. We shall sometimes replace notationxi by
xb
i for b ∈ {−,+}, indicating explicitly an observation from classb1. We also letmb denote the

number of examples in classb1 for b ∈ {−,+} (m = m+ +m−). Furthermore,[m]m′
.
= {m′ + i :

i ∈ [m]} (m ∈ N∗, m
′ ∈ N). Matrix Um

.
= (1/m)11⊤ denotes the uniform Markov chain.

7.2.1 Proof of Theorem 4

The first steps of the proof are the same as [4] (Theorems 5, 8).We sketch them. First, for any
CP T ,

ED

[
L0/1(y, h(x))

]
≤ ED [ϕ(yh(x))]

≤ EST [ϕ(yh(x))] + sup
h∈H
{ED [ϕ(yh(x))]− EST [ϕ(yh(x))]} . (7)

Then, sinceϕ(z) ∈ [0, Kϕ] (assumption(ii) ), the use of the independent bounded differences
inequality [22] yield for any sampleS sampled fromD, and anyς ∈ Sm, and anyδ1, we have with
probability≥ 1− δ1:

sup
h∈H
{ED [ϕ(yh(x))]− EST [ϕ(yh(x))]}

≤ ES∼D

[

sup
h∈H
{ED [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

+Kϕ ·
√

2

m
log

1

δ1
. (8)

We also have, because of the convexity ofsup (see [4]),

ES∼D

[

sup
h∈H
{ED [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

≤ ES,S′∼D

[

sup
h∈H
{ES′ [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

.

The proof now takes a fork compared to [4], as we integrate newsteps to upperbound the right-
hand side. We split the right supremum in two, one which involves different datasets of sizem not
being subject toCP, and one which involves the same dataset with and withoutCP:

ES,S′∼D

[

sup
h∈H
{ES′ [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

= ES,S′∼D

[

sup
h∈H
{(ES′ [ϕ(yh(x))]− ES [ϕ(yh(x))]) + (ES [ϕ(yh(x))]− EST [ϕ(yh(x))])}

]

≤ ES,S′∼D

[

sup
h∈H
{ES′ [ϕ(yh(x))]− ES [ϕ(yh(x))]}

]

︸ ︷︷ ︸
.
=A

+ES∼D

[

sup
h∈H
{ES [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

︸ ︷︷ ︸
.
=B

. (9)
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We handleA andB separately.

Upperbound onA. HandlingA is achieved in the usual way [4]. Following the usual symmetrisa-
tion trick [4] (Theorem 8), and the fact [4] (Theorem 12.4) thatϕ is 1/bϕ-Lipschitz [25] for some
bϕ > 0, we obtain that with probability≥ 1− δ1, we have:

ES,S′∼D

[

sup
h∈H
{ES′ [ϕ(yh(x))]− ES [ϕ(yh(x))]}

]

≤ 4

bϕ
Eσ∼Σm

[

sup
h∈H

∣
∣
∣
∣
∣

1

m

∑

i

σih (xi)

∣
∣
∣
∣
∣

]

+Kϕ ·
√

2

m
log

1

δ1
, (10)

∀δ1 > 0.

Upperbound onB. This penalty appears whenM 6= Im. The trick is becauseϕ is proper sym-
metric, there is a simple way to make appear Rademacher variables and a particular Rademacher
complexity, which follows from the fact that [29]:

ES [ϕ(yh(x))] =
bϕ
2m

∑

σ∈Σ1

∑

i

ϕ(σh(xi))−
h (S)

2
, (11)

where

h (S)
.
=

1

m
·
∑

i

yih(xi) (12)

is theh-mean-operator, a statistics which can be proven to be minimally sufficient for classes given
h [29]. Now, assumption(i) yields the invariance ofh (S) under permutation operation. This is
proved in the following Lemma.

Lemma 12 (mean-operator consistency ofT ) Under the conditions of Theorem 4,

h (S) = h
(
S

T
)

, ∀h, ∀S, ∀T . (13)

Proof To prove it, we let⊕ denote the vector concatenation operation over the features ofFa and
Fs. We now first write using Assumption(i):

m · h (S) =
∑

i

yih(xi)

=
∑

i

yi · h((SFa)⊤1i ⊕ (SFs)⊤1i)

=
∑

i

yi · ha((SFa)⊤1i) +
∑

i

yi · hs((SFs)⊤1i) , (14)

and also, for the same reason,

m · h
(
S

T
)

=
∑

i

yi · ha((SFa)⊤1i) +
∑

i

yi · hs((MSFs)⊤1i) . (15)
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Therefore, we need to prove an equality that depends only upon the features ofFs:

∑

i

yi · hs((SFs)⊤1i) =
∑

i

yi · hs((MSFs)⊤1i) . (16)

We have two cases to consider to prove eq. (16). Notice that since it is a block-class matrix,M
admits the following block matrix decomposition:

M =

[
M+ | 0
0 | M−

]

, (17)

with Mb ∈ Rmb×mb . We distinguish two cases.
Case 1 — Setting (A). In this case,

∑

i∈[m]

yi · hs((MSFs)⊤1i) =
∑

i∈[m]

yi · hs




⊕

k∈[ds]da

∑

l∈[m]

M ilSlk





=
∑

i∈[m]

yi · hs




∑

l∈[m]

M il

⊕

k∈[ds]da

Slk





=
∑

i∈[m]

yi · hs




∑

l∈[m]

M il(SFs)⊤1l





=
∑

i∈[m]

yi
∑

l∈[m]

M il · hs

(
(SFs)⊤1l

)
(18)

=
∑

l∈[m]




∑

i∈[m]

M il



 yl · hs

(
(SFs)⊤1l

)
(19)

=
∑

l∈[m]

yl · hs

(
(SFs)⊤1l

)
. (20)

Here,⊕ denotes the concatenation operator. Eq. (18) holds becauseof Setting (A), eq. (19) holds
because of the class-consistency assumption (eq. (17)), and eq. (20) holds becauseM ∈Mm.

Case 2 — Setting (B). We haveM ∈ S∗
m (and no further assumption onhs). In this case, letting
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ς : [m]→ [m] represent the (block-class) permutation, we have:

∑

i∈[m]

yi · hs((MSFs)⊤1i) =
∑

i∈[m]

yi · hs




⊕

k∈[ds]da

∑

l∈[m]

M ilSlk





=
∑

i∈[m]

yi · hs




⊕

k∈[ds]da

Sς(i)k





=
∑

i∈[m]

yi · hs

(
(SFs)⊤1ς(i)

)

=
∑

i∈[m]

yς(i) · hs

(
(SFs)⊤1ς(i)

)
(21)

=
∑

l∈[m]

yl · hs

(
(SFs)⊤1l

)
. (22)

Eq. (21) holds becauseM is a block-class matrix (eq. (17), and eq. (22) holds becauseς is a
permutation. This ends the proof of Lemma 12

As a remark, whenhs(x) = θ⊤
s xs, with θs ∈ Rds , eq. (13) shows the invariance of the mean

operator

µST = µS

.
=

1

m
·
∑

i

yixi (∀T ) , (23)

as minimal sufficient statistic for the classes [29]. Using eqs. (11) and (13) yield the first following
identity (∀S,T , h):

ES [ϕ(yh(x))]− EST [ϕ(yh(x))]

= ES [ϕ(yh(x))]− EST [ϕ(yh(x))]

=
bϕ
2m







∑

σ∈Σ1

∑

i ϕ(σh((SFa)⊤1i ⊕ (SFs)⊤1i))
−

∑

σ∈Σ1

∑

i ϕ(σh((SFa)⊤1i ⊕ (MSFs)⊤1i))







=
bϕ
2m
· Eσ∼Σm





∑

i ϕ(σih((SFa)⊤1i ⊕ (SFs)⊤1i))
−

∑

i ϕ(σih((SFa)⊤1i ⊕ (MSFs)⊤1i))



 (24)

≤ 1

2m
· Eσ∼Σm

[∣
∣
∣
∣
∣

∑

i

σih((SFa)⊤1i ⊕ (SFs)⊤1i)− σih((SFa)⊤1i ⊕ (MSFs)⊤1i)

∣
∣
∣
∣
∣

]

(25)

=
1

2m
· Eσ∼Σm





∣
∣
∣
∣
∣
∣

∑

i

σi







(ha((SFa)⊤1i)− ha((SFa)⊤1i))
+

(hs((SFs)⊤1i)− hs((MSFs)⊤1i))







∣
∣
∣
∣
∣
∣



 (26)

=
1

2m
· Eσ∼Σm

[∣
∣
∣
∣
∣

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

. (27)
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Eq. (24) holds becauseσ is Rademacher. Ineq. (25) holds becauseFϕ is (1/bϕ)-Lipschitz [25].
Eq. (26) holds because of assumption(i). We thus get the following upperbound forB in ineq. (9):

ES∼D

[

sup
h∈H
{ES [ϕ(yh(x))]− EST [ϕ(yh(x))]}

]

≤ ES∼D

[

sup
hs

Eσ∼Σm

[∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]]

≤ ES∼D,σ∼Σm

[

sup
hs

∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

, (28)

where ineq. (28) holds because of the convexity ofsup. Using assumption(ii) (hs(.) ∈ [0, Ks]),
another use of the independent bounded differences inequality [22] yield with probability≥ 1−δ2:

ES∼D,σ∼Σm

[

sup
hs

∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

≤ Eσ∼Σm

[

sup
hs

∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

+Ks ·
√

2

m
log

1

δ2
. (29)

We now put altogether ineqs. (8), (10) and (29) and obtain that with probability≥ 1 − (2δ1 + δ2),
we shall have

ED

[
L0/1(y, h(x))

]
≤ EST [ϕ(yh(x))]

+
4

bϕ
· Eσ∼Σm

[

sup
h∈H

∣
∣
∣
∣
∣

1

m

∑

i

σih (xi)

∣
∣
∣
∣
∣

]

+Eσ∼Σm

[

sup
hs

∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

+2Kϕ ·
√

2

m
log

1

δ1
+Ks ·

√
2

m
log

1

δ2
. (30)

To simplify this expression, we fixδ1 = δ2 = δ/3 and get with probability≥ 1− δ,

ED

[
L0/1(y, h(x))

]
≤ EST [ϕ(yh(x))]

+Eσ∼Σm

[

sup
hs

∣
∣
∣
∣
∣

1

m

∑

i

σi(hs((SFs)⊤1i)− hs((MSFs)⊤1i))

∣
∣
∣
∣
∣

]

+
4

bϕ
· Eσ∼Σm

[

sup
h∈H

∣
∣
∣
∣
∣

1

m

∑

i

σih (xi)

∣
∣
∣
∣
∣

]

+ (2Kϕ +Ks) ·
√

2

m
log

3

δ

= EST [ϕ(yh(x))] + RCPT (H) +
4

bϕ
· Eσ∼Σm

[

sup
h∈H

∣
∣
∣
∣
∣

1

m

∑

i

σih (xi)

∣
∣
∣
∣
∣

]

+(2Kϕ +Ks) ·
√

2

m
log

3

δ
,

from which we obtain the statement of Theorem 4.
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7.2.2 Example of domain andCP for which (min risk over S
T + RademacherCP complexity)

is strictly smaller than (min risk over S)

We exhibit a toy domain which shows that

min
h

EST [ϕ(yh(x))] + RCPT (H) < min
h

ES [ϕ(yh(x))] , (31)

for ϕ = square loss. LetX = R2, with S consisting of2 copies of observation(0, 0) (positive),2
copies of observation(1, 1) (positive), and1 copy of observation(−1,−1) (negative). We enumer-
ate the examples inS in this order. TheCP satisfiesFa .

= {x}, Fs .
= {y} and

M
.
=









0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1









,

so thatST consists of two copies of observation(1, 0) (positive), two copies of(0, 1) (positive)
and one copy of(−1,−1) (the same observation as inS). Let h

.
= θ, with its coordinates denoted

x andy. The square lossL overS equals:

L =
1

5
·
(
2 + 2(1− x− y)2 + (1− x− y)2

)
, (32)

which is minimized forx = y = 1/2 and yieldsL = 2/5. The square lossLT overST equals:

LT =
1

5
·
(
2(1− x)2 + 2(1− y)2 + (1− x− y)2

)
, (33)

which is minimized forx = y = 3/4 and yieldsLT = 1/10. Assuming all linear separators have
ℓ∞ norm bounded by3/4 (which allows to have both solutions above), theRCP is

RCPT (H)
.
= Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σi

(
h((SFs)⊤1i)− h((MSFs)⊤1i)

)

∣
∣
∣
∣
∣

]

=
1

5
· 3
4
· 1
16
·
∑

σ∈Σ4

|−σ1 − σ2 + σ3 + σ4|

=
3

20
· 1
16
·
∑

σ∈Σ4

∣
∣1

⊤σ
∣
∣

=
3

20
· 1
16
· (4 · 2 + 2 · 8 + 0 · 6) (34)

=
3

20
· 24
16

=
9

40
. (35)

We then check that

LT + RCPT (H) =
13

40
<

2

5
= L , (36)

as claimed.
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7.2.3 Proof of Theorem 6

The proof of Theorem 6 follows from the proof of a more generalTheorem that we prove here. We
say that(M , Ks) satisfies the(γ, δ)-correlation assumption for some0 < δ, γ ≤ 1 iff the following
two assumptions hold:

(a) ((Im − M)Ks(Im − M)⊤)ii ≥ (1− δ) · (1/m) · tr
(
(Im − M)Ks(Im − M)⊤

)
, ∀i ∈ [m];

(b) |((Im − M)Ks(Im − M)⊤)ii′/
√

((Im − M)Ks(Im − M)⊤)ii((Im − M)Ks(Im − M)⊤)i′i′ | ≥
1− γ, ∀i, i′ ∈ [m].

Regardless ofS, there always exist0 < δ, γ ≤ 1 for which this holds, but the bound may be
quantitatively better when at least one is small.

Theorem 13 Using notations of Theorem 6, there existsǫ > 0 such that for anyS andT for which
(M , Ks) satisfies the(γ, δ)-correlation assumption, we have

RCPT (H) ≤ u · rs√
m
·
√

1

m
· 〈Im, Ks〉M Im . (37)

with

u
.
=

1

m
+ κ(ǫ)

(

1− 1

m

)

, (38)

andκ(ǫ) = 1− ((1− δ)(1− ǫ)(1− γ))2 ∈ (0, 1).

Furthermore,

1

m
· 〈Im, Ks〉M = 2 ·

∑

j∈[ds]

V(SFs1j)(1− ρ(SFs1j, MSFs
1j)) . (39)

Proof We observe that∀σ ∈ Σm,

arg sup
θ∈Rds :‖θ‖2≤rs

∣
∣
∣
∣
∣

1

m

∑

i

σiθ
⊤
(
((Im − M)SFs)⊤1i

)

∣
∣
∣
∣
∣

=
rs

‖
∑

i σi((Im − M)SFs)⊤1i‖2

∑

i

σi((Im − M)SFs)⊤1i ,
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and so:

RCPT (H) = Eσ∼Σm

[

sup
h∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

σi

(
h((SFs)⊤1i)− h((MSFs)⊤1i)

)

∣
∣
∣
∣
∣

]

(40)

=
rs
m
· Eσ∼Σm

[∥
∥
∥
∥
∥

∑

i

σi((Im − M)SFs)⊤1i

∥
∥
∥
∥
∥
2

]

=
rs
m
·
√
∑

i

‖((Im − M)SFs)⊤1i‖22

·Eσ∼Σm

[√

1 +

∑

i 6=i′ σiσi′1
⊤
i (Im − M)SFs(SFs)⊤(Im − M)⊤1i′

∑

i ‖((Im − M)SFs)⊤1i‖22

]

.
=

rs
m
·
√
∑

i

‖((Im − M)SFs)⊤1i‖22 · Eσ∼Σm

[√

1 + u(σ)
]

, (41)

with

u(σ)
.
=

∑

i 6=i′ σiσi′1
⊤
i (Im − M)SFs(SFs)⊤(Im − M)⊤1i′

∑

i ‖((Im − M)SFs)⊤1i‖22
. (42)

Let us call for shortδi
.
= ((Im − M)SFs)⊤1i, so that eq. (42) can be simplified tou(σ) =

(
∑

i ‖δi‖22)−1
∑

i 6=i′ σiσi′δ
⊤
i δi′ . ∀n ∈ N∗, we have

Eσ∼Σm
[un(σ)]

=
1

(
∑

i ‖δi‖22)
n · Eσ∼Σm




∑

i1 6=i′1

∑

i2 6=i′2

· · ·
∑

in 6=i′n

n∏

k=1

σikσi′
k
δ⊤
ik
δi′

k





=
1

(
∑

i ‖δi‖22)
n ·
∑

i1 6=i′1

∑

i2 6=i′2

· · ·
∑

in 6=i′n

Eσ∼Σm

[
n∏

k=1

σikσi′
k
δ⊤
ik
δi′

k

]

=
1

(
∑

i ‖δi‖22)
n ·
∑

i1 6=i′1

∑

i2 6=i′2

· · ·
∑

in 6=i′n

∏

(i,i′)∈{(ik ,i
′
k
)}n

k=1

Eσ∼Σm

[

(σiσi′)
n(i,i′)

] (
δ⊤
i δi′

)n(i,i′)
,(43)

with n(i, i′)
.
= |{k : (i, i′) = (ik, i

′
k)}| satisfying

∑
n(i, i′) = n. Whenevern(i, i′) is odd,

Eσ∼Σm

[
(σiσi′)

n(i,i′)
]
= 0 (becauseσ is Rademacher), and it is 1 otherwise. We get, ifn is even:

Eσ∼Σm
[un(σ)]

=
1

(
∑

i ‖δi‖22)
n ·

∑

0<ℓ≤n

∑

{nk}ℓk=1 ⊂ N∗

s.t.2
∑

nk = n

∑

{(ik, i′k)}ℓk=1

s.t. ik 6= i′k, ∀k

ℓ∏

k=1

(
δ⊤
ik
δi′

k

)2nk

︸ ︷︷ ︸
.
=ζ(n)

, (44)

andEσ∼Σm
[un(σ)] = 0 if n is odd. Since

√
1 + x = 1 +

∑

n∈N∗

1

2nn!
·
n−1∏

k=0

(1− 2k)xn , (45)
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we get after combining with eqs (41) and (44) and using the definition of ζ(.) in eq. (44):

RCPT (H) =
rs
m
·
√
∑

i

‖δi‖22 ·
(

1−
∑

n∈N∗

∏2n−1
k=1 (2k − 1) · ζ(2n)

(2n)!
(
2
∑

i ‖δi‖
2
2

)2n

)

=
rs
m
·
√
∑

i

‖δi‖22 ·
(

1−
∑

n∈N∗

∏2n−1
k=1 (2k − 1)

(2m)2n(2n)!
· ζ̃(2n)

)

, (46)

with:

ζ̃(2n)

.
=

∑

0<ℓ≤2n

∑

{nk}ℓk=1 ⊂ N∗

s.t.
∑

nk = n

∑

{(ik, i′k)}ℓk=1

s.t. ik 6= i′k, ∀k

ℓ∏

k=1







‖δik‖22
1
m
·
∑

p ‖δp‖
2
2

·
∥

∥

∥

δi′
k

∥

∥

∥

2

2
1
m
·
∑

p ‖δp‖
2
2

· γik,i′k







2nk

, (47)

andγi,i′
.
= cos(δi, δi′). Remark that eq. (46) is an equality. We now use assumption(a) and obtain

ζ̃(2n) ≥ (1− δ)2n
∑

0<ℓ≤2n

∑

{nk}ℓk=1 ⊂ N∗

s.t.
∑

nk = n

∑

{(ik, i′k)}ℓk=1

s.t. ik 6= i′k, ∀k

ℓ∏

k=1

(
γik,i′k

)2nk . (48)

Denote for shortU(n) the set of eligible triples(nk, ik, i
′
k) in the summation. We get because of

assumption(b) ζ̃(2n) ≥ |U(n)|((1− δ)(1− γ))2n, and so, using the shorthand

L
.
=

1

m
·
∑

i

‖δi‖22 , (49)

we obtain our first upperbound,

RCPT (H) ≤ rs√
m
·
√

L ·
(

1−
∑

n∈N∗

|U(n)|
(
(1− δ)(1− γ)

m

)2n

·
∏2n−1

k=1 (2k − 1)

22n(2n)!

)

.(50)

Lemma 14 There exists a constantǫ > 0 such that∀n ∈ N∗,

∏2n−1
k=1 (2k − 1)

(2n)!
≥ (2(1− ǫ))2n . (51)

Proof We proceed by induction, lettinggǫ(n)
.
= (2(1− ǫ))2n and

f(n)
.
=

∏2n−1
k=1 (2k − 1)

(2n)!
, (52)
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and forǫ = ǫ∗
.
= 1− 1/(2

√
2). We remark thatgǫ∗(1) = f(1). Furthermore,

f(n+ 1) =

∏2(n+1)−1
k=1 (2k − 1)

(2(n+ 1))!
=

(2n− 1)(2n+ 1)

(n+ 1)(n+ 2)
·
∏2n−1

k=1 (2k − 1)

(2n)!

≥ (2n− 1)(2n+ 1)

(n+ 1)(n+ 2)
· (2(1− ǫ))2n (53)

=
(2n− 1)(2n+ 1)

(n+ 1)(n+ 2)(2(1− ǫ))2
· gǫ(n+ 1) ,

where ineq. (53) uses the induction hypothesis. We prove theLemma once we prove that the factor
on the right is at least 1, that is, forǫ = ǫ∗, we need to prove

(2n− 1)(2n+ 1)

(n+ 1)(n + 2)
≥ 1

2
, (54)

which is indeed the case since the left function is strictly increasing overN and equals the right-
hand side forn = 1.

So we get from ineq. (50):

RCPT (H) ≤ rs√
m
·
√

L ·
(

1−
∑

n∈N∗

|U(n)|
(
(1− δ)(1− γ)(1− ǫ)

m

)2n
)

≤ rs√
m
·
√

L ·
(

1− u∗(m)
∑

n∈N∗

(
(1− δ)(1− γ)(1− ǫ)

m

)2n
)

, (55)

whereu∗(m) satisfiesu∗(m) ≤ minn |U(n)|. We finally get:

RCPT (H) ≤ rs√
m
·
√

L ·
(

1− (1− κ(ǫ)) · u∗(m)

m2 − (1− κ(ǫ))

)

≤ rs√
m
·
√

L ·
(

1− (1− κ(ǫ)) · u∗(m)

m2

)

≤ rs√
m
·
√

L ·
(

1

m
+ κ(ǫ)

(

1− 1

m

))

, (56)

with κ(ǫ) = 1− ((1− δ)(1− ǫ)(1− γ))2 > 0, sinceu∗(m) ≥ m(m− 1) (obtained forℓ = 2n in
eq. (48)). We finish the proof by remarking thatL in eq. (49) satisfies

L =
1

m
·
∑

i

1
⊤
i (Im − M)SFs(SFs)⊤(Im − M)⊤1i

=
1

m
· tr
(
(Im − M)SFs(SFs)⊤(Im − M)⊤

)

=
1

m
· tr
(
(Im − M)Ks(Im − M)⊤

)

=
1

m
· tr
(
(Im − M)⊤Im(Im − M)Ks

)

=
1

m
· 〈Im, Ks〉M . (57)
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Ineq. (56) and eq. (57) allow to conclude the proof of Theorem13 with

u
.
=

1

m
+ κ(ǫ)

(

1− 1

m

)

, (58)

which, sinceκ(ǫ) < 1, satisfies indeedu ∈ (0, 1). This achieves the main part of the proof
of Theorem 13. To prove eq. (39), we just have to write (letting ς : [m] → [m] represent the
corresponding permutation),

1

m
· 〈Im, Ks〉M

=
1

m

∑

i

∥
∥xs

i − xs
ς(i)

∥
∥2

2

=
∑

j∈[ds]

1

m
·
∑

i

(xs
ij − xs

ς(i)j)
2

= 2 ·
∑

j∈[ds]

{

1

m
·
∑

i

(xs
ij)

2 − 1

m
·
∑

i

xs
ijx

s
ς(i)j

}

(59)

= 2 ·
∑

j∈[ds]







1

m
·
∑

i

(xs
ij)

2 −
(

1

m
·
∑

i

xs
ij

)2

+

(

1

m
·
∑

i

xs
ij

)2

− 1

m
·
∑

i

xs
ijx

s
ς(i)j







= 2 ·
∑

j∈[ds]

{V(SFs1j)− Cov(SFs1j , MSFs
1j)}

= 2 ·
∑

j∈[ds]

V(SFs1j)

{

1− Cov(SFs1j , MSFs
1j)

√

V(SFs1j)
√

V(MSFs
1j)

}

(60)

= 2 ·
∑

j∈[ds]

V(SFs1j)(1− ρ(SFs1j, MSFs
1j)) ,

where eq. (60) follows from the fact thatV(SFs1j) = V(MSFs
1j).

Remark: it is worthwhile remarking that the proof of Theorem 6 can also be applied to upperbound
the empirical Rademacher complexity of linear functions, without modifications, except for the
handling ofL . In this case, the proof improves the upperbound known [18] (Theorem 1) by factor
u in eq. (58). This is due to the fact that the proof in [18] takesinto account only the maximum
norm in the observations ofS, and not the angles between the observations. We now state the
corresponding Theorem.

Theorem 15 Following [15], we let imr denote the set ofr-tuples drawn without replacement
drawn from[m]. SupposeS satisfies the following for someδ, γ > 0 andrx > 0:

(a) ‖xi‖22 ≥ (1− δ) · (1/m)
∑

i′ ‖xi′‖22, ∀i ∈ [m];

(b) E(i,i′)∼im2
[| cos(xi,xi′)|] ≥ 1− γ;

(c) ‖xi‖2 ≤ rx, ∀i ∈ [m].

28



5

2

σ. = +1

σ. = −1
6

1

4

3

Figure 2: A permutationς defines an oriented graph whose vertices are examples and permutation
ς defines arcs (here,ς(1) = 2 for example; black dots are positive examples, red dots are negative
examples). Each term in thesup of eq. (62) is a weighted cut (one weighted cut for eachσ ∈
{−1, 1}m): the squares depict the examples for whichw(.) 6= 0 in Lemma 16 for theσ displayed.
In this example ofσ, only two examples out of the six would bring a non-zero weight w(.).

Then, assuming thatH contains linear classifiers of the formθ⊤x with ‖θ‖2 ≤ rθ, there exists
ǫ > 0 such that the empirical Rademacher complexity ofH satisfies:

RS(H) ≤
(

1

m
+ κ(ǫ)

(

1− 1

m

))

· rxrθ√
m

, (61)

with κ(ǫ) = 1− ((1− δ)(1− ǫ)(1− γ))2 ∈ (0, 1).

[18]’s proof relies on(c). Since(a) and(b) can always be satisfied for someδ, γ > 0, ineq. (37)
holds under their setting as well; however, it becomes better than theirs as bothδ, γ are small, so
in particular in the case where observations start to be heavily correlated and be of approximately
the same norm. Indeed, in this case,

∑

i σixi will often havesmallmagnitude, becauseΣm ∋ σ ∼
{−1, 1} and thus many vectors will approximately cancel through thesum in many draws ofσ.

7.2.4 Proof of Theorem 7

We first start by a Lemma which shows that indeedRCPT (H) can be significantly smaller than a
Rademacher complexity.

Lemma 16 Suppose setting (B) holds in Theorem 4. Then

RCPT (H) = 2 · Eσ∼Σm

[

sup
hs∈Hs

∣
∣
∣
∣
∣

1

m

∑

i

w(i)hs((SFs)⊤1i)

∣
∣
∣
∣
∣

]

, (62)

wherew(i)
.
= (1/2) · (σi − σς−1(i)) ∈ {−1, 0, 1}.
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The proof of this Lemma is straightforward. What is interesting is, sincew(.) can take on zero
values, to what extentRCPT (H) can be smaller than the corresponding Rademacher complexity in
whichw(.) would be replaced byσ ∈ {−1, 1}m, and what drives this reduction. Figure 2 displays
qualitatively this intuition on a simple example. We now investigate a quantitative derivation of
the reduction forDAG classifiers.

We letcutς(σ)
.
= {i : σi 6= σς−1(i)}. We simplify notations in the proof and drop notationb so

that notationhi
s

.
= hs((SFs)⊤1i) wherei ∈ [m]. We let

µ
.
= Eσ∼Σm



 sup
hs∈Hs

∑

i∈cutς(σ)

σih
i
s



 , (63)

which is a generalisation ofm · RCPT (H) to any permutationς ∈ Sm, and not just a block-class
permutation inS∗

m as assumed in Setting (B). We assume basic knowledge of Massart’s finite class
Lemma’s proof. Using Jensen’s inequality, we arrive, afterthe same chain of derivations, for any
t > 0, to:

exp(tµ) ≤ 1

2m

∑

σ∈{−1,1}m

sup
hs∈Hs

exp



t ·
∑

i∈cutς(σ)

σih
i
s



 . (64)

The proof (of Massart’s Lemma) now involves replacing thesup by a sum. Remark that whenh is
DAG, thesup implies that eachhj

s is in fact∈ {±Ks}. So let us useHs
+ ⊆ Hs, the set of classifiers

whose output is in{±Ks}. We get:

exp(tµ) ≤
∑

hs∈Hs
+

1

2m

∑

σ∈{−1,1}m

exp



t ·
∑

i∈cutς(σ)

σih
i
s



 . (65)

To identify better permutations, we name in this proofς ∈ S∗
m the permutation represented byM ,

so that we also have

odd_cycle(M)
.
= odd_cycle(ς) .

Since each coordinate ofσ is chosen uniformly at random, cycles in a permutation are disjoint and
exp(a+ b) = exp(a) exp(b), the inner sigma in ineq. (65) factors over the cycles of permutationς:

∑

hs∈Hs
+

1

2m

∑

σ∈{−1,1}m

exp



t ·
∑

i∈cutς(σ)

σih
i
s





=
1

2m

∑

hs∈Hs
+

∏

U∈cycle(ς)




∑

σ∈{−1,1}|U|

exp



t ·
∑

i∈cutς(σ)∩U

σih
U
i







 , (66)

wherehU indicates coordinates ofh in U andcycle(ς) is the set of cycleswithout 1-cycles(i.e.
fixed points) — we have letmς denote the number of fixed points ofς. We have used the fact that
cycles define a partition of[m].
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Now, wheneverU contains anoddnumber of indexes, whateverσ, the sum overcutς(σ) ∩ U
cannot cover the sum overU : there always remains at least one vertex which does not belong to
the sum (In Figure 2, the red dot cycle displays this fact on anexample). Let us denoteiσ ∈ [|U |]
this vertex. Sinceexp(x) + exp(−x) ≥ 2 + x2 andhs ∈ Hs

+, we get:

∑

σ∈{−1,1}|U|

exp



t ·
∑

i∈cutς(σ)∩U

σih
U
i





≤ 1

2 + t2K2
s

·
∑

σ∈{−1,1}|U|






exp



t ·
∑

i∈cutς(σ)∩U

σih
U
i



 ·
(
exp(thU

iσ) + exp(−thU
iσ)
)






(67)

≤ 2

2 + t2K2
s

·
∑

σ∈{−1,1}|U|

exp

(

t ·
∑

i∈U

σih
U
i

)

, (68)

since the multiplication in ineq. (67) duplicates part of the terms in (68). We now plug this bound
in eq. (65 — 66) and finish the derivation following Massart’sfinite class Lemma:

exp(tµ) ≤
(

2

2 + t2K2
s

)|odd_cycle(ς)|

· 1

2m

∑

hs∈Hs
+

∑

σ∈{−1,1}m

exp

(

t ·
∑

i

σihi

)

=

(
2

2 + t2K2
s

)|odd_cycle(ς)|

·
∑

hs∈Hs
+

∏

i

(
exp(thi

s) + exp(−thi
s)

2

)

≤
(

2

2 + t2K2
s

)|odd_cycle(ς)|

· |Hs
+| exp

(

t2

2
·
∑

i

(

max
h∈Hs

+

hi
s

)2
)

(69)

≤
(

2

2 + t2K2
s

)|odd_cycle(ς)|

· |Hs
+| exp

(
t2mK2

s

2

)

.

Ineq. (69) holds because(exp(x)+exp(−x))/2 ≤ exp(x2/2). Taking logs and rearranging yields:

µ ≤ 1

t
· log |Hs

+|
(

1 + t2K2
s

2

)|odd_cycle(ς)|
+

tmK2
s

2
. (70)

Now, suppose that we can chooset such that

t2K2
s

2
≥ ε , (71)

for someε > 0. In this case, ineq. (70) implies

µ ≤ 1

t
· log |Hs

+|
(1 + ε)|odd_cycle(ς)|

+
tmK2

s

2
, (72)

which is of the formµ ≤ A/t + Bt with B > 0. Takingt =
√

A/B yields, using the fact that
each classifier inHs

+ :

µ ≤ Ks ·
√

2m log
|Hs

+|
(1 + ε)|odd_cycle(ς)|

. (73)
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Dividing by m gives the statement of Theorem 7. We need however to check that ineq. (71) holds,
which, sincet =

√

A/B, yields that we must have, after simplification:

log |Hs
+| ≥ εm+ |odd_cycle(ς)| log(1 + ε) . (74)

Since we have excluded fixed points,|odd_cycle(ς)| ≤ m/3, and sincelog(1+x) ≤ x, a sufficient
condition islog |Hs

+| ≥ 4εm/3, which is the Theorem’s assumption.

We now show a bound on the expectedRCP when M in T is picked uniformly at random,
with or without the class consistency requirement, as a function of the non-fixed points in the
permutations. Following [15], we letimr denote the set ofr-tuples drawn without replacement
drawn from[m]. We also letim,b

r denote the set ofr-tuples drawn without replacement drawn from
[m] ∩ {i : yi = b1}, for b ∈ {−,+}.

Theorem 17 Under the joint Settings of Theorem 6 and Setting (B), letSk
m denotes the set of

permutations with exactlyk non-fixed points, andSkb
m its subset of block-class permutations with

non-fixed points in classb ∈ {−,+}. Then forS ∈ {Sk
m, S

k−
m , Sk+

m } the following holds over the
uniform sampling of permutations:

EM∼S[RCPT (H)] ≤ u · rs√
m
·
√

k

m
·Q , (75)

whereQ
.
= E(i,i′)∼im2

[‖xs
i − xs

i′‖22] if S = Sk
m, and Q

.
= E(i,i′)∼i

m,b
2

[‖xs
i − xs

i′‖22] if S = Skb
m

(b ∈ {−,+}).

Proof We make the proof forS = Sk
m. The two other cases follow in the same way. We have from

Theorem 6, because of Jensen inequality:

EM∼Sk
m
[RCPT (H)] ≤ u · rs√

m
· EM∼Sk

m

[√

1

m
· 〈Im, Ks〉M

]

≤ u · rs√
m
·
√

1

m
· EM∼Sk

m
[〈Im, Ks〉M ] . (76)

We now decompose the expectation inside and first condition on the set of permutations whose set
of non fixed points are the same set ofk examples, say fori ∈ [k]. Let us callSk∗

m this subset of
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Sk
m. In this case, we obtain:

EM∼Sk∗
m
[〈Im, Ks〉M ]

= EM∼Sk∗
m

[
tr
(
(Im − M)Ks(Im − M)⊤

)]

= tr (Ks) + EM∼Sk∗
m

[
tr
(
MK sM⊤

)]
− 2 · EM∼Sk∗

m
[tr (MK s)] (77)

= 2 ·
(

tr (Ks)− tr
(

EM∼Sk∗
m
[M ] Ks

))

= 2 ·




∑

i∈[m]

Ks
ii −

∑

i∈[k]

1

k
·
∑

i′∈[k]

Ks
ii′ −

∑

i∈[m]\[k]

Ks
ii



 (78)

= 2 ·




k − 1

k
·
∑

i∈[k]

Ks
ii −

1

k
·
∑

(i,i′)∈ik2

Ks
ii′





=
2

k
·




∑

(i,i′)∈ik2

Ks
ii + Ks

i′i′

2
− Ks

ii′





=
1

k
·
∑

(i,i′)∈ik2

‖xs
i − xs

i′‖22 . (79)

In eq. (77) we use the fact thatKs is symmetric. Eq. (78) uses the fact that

EM∼Sk∗
m
[M ] =

[
Uk | 0
0 | Im−k

]

,

where we recall thatUk
.
= 1

k
·11⊤ (main file, Definition 8). There remains to average eq. (79) over

the set of all permutations whose set of fixed points is a different (m − k)-subset of[m] and the
statement of Theorem 17 is proven forS = Sk

m.

The key point in the bound is factork/m, which implies that when permutations have lots of
fixed points, say(1−Ω(1))m, then theRCPmay just vanish (asm increases) wrt the Rademacher
complexity, whose dependency onm isΩ(1/

√
m) [18].

7.2.5 Proof of Theorem 9

The proof stems from the following Theorem, which just assumes thatKu andKv can be diagonal-
ized (hence, it is applies to a more general setting than kernel functions).

Theorem 18 Let Ku and Kv be two diagonalisable matrices with respective eigendecomposition
{λi,ui}i∈[d] and {µi, vi}i∈[d], with eigenvalues eventually duplicated up to their algebraic mul-
tiplicity. Letting a

.
= (1/m)1⊤a denote the average coordinate ina, the difference in Hilbert-

Schmidt Independence Criterion with respect to shufflingM satisfies:

HSIC(Ku, Kv)− HSIC(Ku, MK vM⊤) = −2m ·
(
∑

i

λiuiui

)⊤

(Im − M)

(
∑

i

µivivi

)

.(80)
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Hence, ifM ∈ Se
m permutesℓ andℓ′ in [m], thenHSIC(Ku, MK vM⊤) > HSIC(Ku, Kv) iff:

(
∑

i

λiui(uiℓ − uiℓ′)

)(
∑

i

µivi(viℓ − viℓ′)

)

> 0 . (81)

Proof Being symmetric,Ku andKv can be diagonalized asKu =
∑

i λiuiu
⊤
i andKv =

∑

i µiviv
⊤
i .

We use definitionUm
.
= (1/m)11⊤ for short. The following is folklore or can be can be checked

after analytic derivations that we omit:

tr (UmKuKv) = m

(
∑

i

λiuiui

)(
∑

i

µivivi

)

= tr (KuUmKv)

tr (UmKuUmKv) = m2

(
∑

i

λi(ui)
2

)(
∑

i

µi(vi)
2

)

tr (KuKv) =
∑

i

λiµi . (82)

We thus get

HSIC(Ku, Kv) = 〈Ku, Kv〉Um

= tr ((Im − Um)K
u(Im − Um)K

v)

= tr (KuKv)− tr (UmKuKv)− tr (KuUmKv) + tr (UmKuUmKv)

=
∑

i

λiµi − 2m ·
(
∑

i

λiuiui

)⊤(
∑

i

µivivi

)

+m2 ·
(
∑

i

λi(ui)
2

)

·
(
∑

i

µi(vi)
2

)

= m2

(

1

m2
·
∑

i

λiµi −
2

m

∑

i,j

λiuiu
⊤
i µjvjvj +

∑

i,j

λiµj(ui)
2(vj)

2

)

= m2

(

1

m2
·
∑

i

λiµi −
1

m2
·
∑

i,j

λiµj(u
⊤
i vj)

2 +
∑

i,j

λiµj

(
1

m
u⊤

i vj − uivj

)2
)

= m2

(
1

m2
· λ⊤ (I − C)µ+ λ⊤Jµ

)

(83)

= λ⊤
(
(I − C) +m2 · J

)
µ . (84)

We have used here the square cosine matrixC with Cij
.
= cos2(ui,uj), and the square correlation

matrix J with Jij
.
= ((1/m)u⊤

i vj − uivj)
2. Now, suppose we performCP T with shuffling matrix

M . Kv and its eigendecomposition become after shuffling

MK vM⊤ =
∑

i

µi(Mvi)(Mvi)
⊤ . (85)
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Remark that shuffling affects the order in the coordinate ofall eigenvectors. So the difference
between the two Hilbert-Schmidt Independence Criteria (before - after shuffling) is:

HSIC(Ku, Kv)− HSIC(Ku, MK vM⊤)

=
∑

i,j

λiµj((u
⊤
i Mvj)

2 − (u⊤
i vj)

2)

−
∑

i,j

λiµj

{(
u⊤

i Mvj −muivj
)2 −

(
u⊤

i vj −muivj
)2
}

=
∑

i,j

λiµj · u⊤
i (M − Im)vj · u⊤

i (M + Im)vj

−
∑

i,j

λiµj

{
u⊤

i (M − Im)vj · (u⊤
i (M + Im)vj − 2muivj)

}

= 2m ·
∑

i,j

(λiui)u
⊤
i (M − Im)(µjvj)

= 2m ·
(
∑

i

λiuiui

)⊤

(M − Im)

(
∑

i

µivivi

)

. (86)

We now remark that wheneverM ∈ Se
m, if it permutesℓ and ℓ′ in [m], thena(M − Im)b =

aℓ(bℓ′ − bℓ) + aℓ′(bℓ − bℓ′) = −(aℓ − aℓ′)(bℓ − bℓ′), so we get:

HSIC(Ku, Kv)− HSIC(Ku, MK vM⊤)

= −2m
(
∑

i

λiui(uiℓ − uiℓ′)

)(
∑

i

µivi(viℓ − viℓ′)

)

, (87)

and we get ineq. (81).

This ends the proof of Theorem 9.

7.2.6 Proof of Theorem 10

The Theorem is a direct consequence of the following Theorem.

Theorem 19 Let Ku andKv be two kernel functions overS. Then for any elementary permutation
M ∈ Se

m that permutesℓ andℓ′ in [m],

HSIC(Ku, MK vM⊤)− HSIC(Ku, Kv) = −2m · Cov(δu
ℓℓ′,δ

v
ℓℓ′) + R

u,v
ℓℓ′ , (88)

with

R
u,v
ℓℓ′

.
= (Ku

ℓℓ − Ku
ℓ′ℓ)(K

v
ℓℓ − Kv

ℓ′ℓ) + (Ku
ℓ′ℓ′ − Ku

ℓ′ℓ)(K
v
ℓ′ℓ′ − Kv

ℓ′ℓ) . (89)

Furthermore, the uniform sampling of elementary permutations inSe
m satisfies:

EM∼Se
m

[
HSIC(Ku, MK vM⊤)

]
=

(

1− 8

m− 1

)

· HSIC(Ku, Kv) +
8

m− 1
·Ru,v , (90)
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with

R
u,v .

=
∑

i

Ku
iiK

v
ii −

1

m
·
(∑

i Ku
iiK

v
.i +

∑

i Ku
.iK

v
ii

2

)

. (91)

Here, when replacing an index notation by a point, “.”, we denote a sum over all possible values
of this index.

Proof We first decomposeHSIC(Ku, Kv):

HSIC(Ku, Kv) =
∑

i,i′

Ku
ii′K

v
ii′ −

2

m
·
∑

i

Ku
i.K

v
i. +

1

m2
Ku

..K
u
.. . (92)

for any(ℓ, ℓ′) ∈ i
m
2 . For anyM ∈ Se

m denoting an elementary permutationς of the features inFs

such thatV ⊆ Fs andς(ℓ) = ℓ′, ς(ℓ′) = ℓ, we obtain:

HSIC(Ku, MK vM⊤)− HSIC(Ku, Kv)

= 2 ·
(
∑

i 6=ℓ,ℓ′

Ku
ℓiK

v
ℓ′i +

∑

i 6=ℓ,ℓ′

Ku
ℓ′iK

v
ℓi −

∑

i 6=ℓ,ℓ′

Ku
ℓiK

v
ℓi −

∑

i 6=ℓ,ℓ′

Ku
ℓ′iK

v
ℓ′i

)

− 2

m
· Ku

ℓ.K
v
ℓ′. −

2

m
· Ku

ℓ′.K
v
ℓ. +

2

m
· Ku

ℓ.K
v
ℓ. +

2

m
· Ku

ℓ′.K
v
ℓ′.

= −2
(
∑

i

(Ku
ℓi − Ku

ℓ′i)(K
v
ℓi − Kv

ℓ′i)−
1

m
· (Ku

ℓ. − Ku
ℓ′.)(K

v
ℓ. − Kv

ℓ′.)

)

+(Ku
ℓℓ − Ku

ℓ′ℓ)(K
v
ℓℓ − Kv

ℓ′ℓ) + (Ku
ℓ′ℓ′ − Ku

ℓ′ℓ)(K
v
ℓ′ℓ′ − Kv

ℓ′ℓ)

= −2m ·Cov(δu
ℓℓ′ ,δ

v
ℓℓ′) + R

u,v
ℓℓ′ ,

which is eq. (88). We also have:

EM∼Se
m

[
∑

i

(Ku
ℓi − Ku

ℓ′i)(K
v
ℓi − Kv

ℓ′i)

]

=
4

m
·
∑

i,i′

Ku
ii′K

v
ii′ −

4

m(m− 1)
·
∑

i

Ku
i.K

v
i.

+
4

m(m− 1)
·
∑

i,i′

Ku
ii′K

v
ii′

=
4

m− 1
·
∑

i,i′

Ku
ii′K

v
ii′ −

4

m(m− 1)
·
∑

i

Ku
i.K

v
i. ,

EM∼Se
m
[(Ku

ℓ. − Ku
ℓ′.)(K

v
ℓ. − Kv

ℓ′.)] =
4

m
·
∑

i

Ku
i.K

v
i. −

4

m(m− 1)
·
∑

i∈[m]

Ku
i.

∑

i′∈[m]\{i}

Kv
i′.

=
4

m
·
∑

i

Ku
i.K

v
i. −

4

m(m− 1)
·
∑

i

Ku
i. · (Kv

.. − Kv
i.)

=
4

m
·
∑

i

Ku
i.K

v
i. −

4

m(m− 1)
Ku

..K
v
.. +

4

m(m− 1)
·
∑

i

Ku
i.K

v
i.

=
4

m− 1
·
∑

i

Ku
i.K

v
i. −

4

m(m− 1)
Ku

..K
v
.. ,
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and finally

EM∼Se
m
[Ru,v

ℓℓ′ ] =
8

m− 1
·
[
∑

i

Ku
iiK

v
ii −

1

m
·
(∑

i Ku
iiK

v
.i +

∑

i Ku
.iK

v
ii

2

)]

.
=

8

m− 1
·Ru,v , (93)

since

EM∼Se
m
[(Ku

ℓℓ − Ku
ℓ′ℓ)(K

v
ℓℓ − Kv

ℓ′ℓ)]

=
4

m(m− 1)

∑

i

∑

i′ 6=i

Ku
iiK

v
ii −

2

m(m− 1)

∑

i

∑

i′ 6=i

Ku
iiK

v
i′i −

2

m(m− 1)

∑

i

∑

i′ 6=i

Ku
i′iK

v
ii

=
4

m

∑

i

Ku
iiK

v
ii −

2

m(m− 1)

∑

i

Ku
ii(K

v
.i − Kv

ii)−
2

m(m− 1)

∑

i

(Ku
i. − Ku

ii)K
v
ii

=
4

m

∑

i

Ku
iiK

v
ii +

4

m(m− 1)

∑

i

Ku
iiK

v
ii −

2

m(m− 1)

∑

i

Ku
iiK

v
.i −

2

m(m− 1)

∑

i

Ku
i.K

v
ii

=
4

m− 1

∑

i

Ku
iiK

v
ii −

2

m(m− 1)

∑

i

Ku
iiK

v
.i −

2

m(m− 1)

∑

i

Ku
i.K

v
ii

= EM∼Se
m
[(Ku

ℓ′ℓ′ − Ku
ℓ′ℓ)(K

v
ℓ′ℓ′ − Kv

ℓ′ℓ)] .

So we obtain

EM∼Se
m

[
HSIC(Ku, MK vM⊤)− HSIC(Ku, Kv)

]

= − 8

m− 1
·
∑

i,i′

Ku
ii′K

v
ii′ +

8

m(m− 1)
·
∑

i

Ku
i.K

v
i.

+
8

m(m− 1)
·
∑

i

Ku
i.K

v
i. −

8

m2(m− 1)
Ku

..K
v
.. +

8

m− 1
·Ru,v

= − 8

m− 1
· HSIC(Ku, Kv) +

8

m− 1
·Ru,v .

This ends the proof of Theorem 19.

When kernel functions have unit diagonal (such as for the Gaussian kernel), eq. (91) simplifies to:

R
u,v .

= m

(

1− 1

m2
·
(

Ku
.. + Kv

..

2

))

. (94)

Hence, provided we performT
.
= ǫm elementary permutations, there exists a sequence of such

permutations such that the compositionM∗
.
= MT MT−1 · · ·M1 satisfies:

HSIC(Ku, M∗KvM⊤
∗ ) ≤

(

1− 8

m− 1

)ǫm

· HSIC(Ku, Kv) +

[

1−
(

1− 8

m− 1

)ǫm]

·Ru,v

≤ α(ǫ) · HSIC(Ku, Kv) + (1− α(ǫ)) ·Ru,v , (95)
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Figure 3: The Cornia-Mooij model [6]. Left: belief, right: true model.

with

α(ǫ)
.
= exp (−8ǫ) , (96)

as long asHSIC(Ku, Kv) ≥ Ru,v. We have used the fact that
(

1− 8

m− 1

)ǫm

≤ exp

(

− 8ǫm

m− 1

)

≤ exp(−8ǫ) . (97)

This achieves the proof of Theorem 10.

7.2.7 The Cornia-Mooij model and results

We now show how to trick statistical tests into keeping independenceand then incur arbitrarily
large errors in estimating causal effects. The model we refer to is the Cornia-Mooij (CM) model
[6], shown in Figure 3. In the CM model, there ared = 3 observation variables, and a true
model which relies on a weak conditional dependencex1 /⊥⊥x3|x2. [6] show thatif one keeps the
independence assumptionH0 thatx1⊥⊥x3|x2, this can lead to very high causal estimation errors,
as measured by|E[x3|x2] − E[x3|do(x2)]|/|x2| [6]. We show that theCP is precisely able to trick
statistics into keepingH0.

There is a hidden confounderx4, which is assumed to be independent fromx1. The true model
makes the following statistical dependence assumptions:

• x1 /⊥⊥x2,

• x2 /⊥⊥x3,

• and the most important one, which we scramble through theCP, x1 /⊥⊥x3|x2.

We chose this simple model because (a) it belongs to the few worst-case models for causality anal-
ysis, and (b) it shows, in addition to jamming (non)linear correlations, howCP can also jam partial
correlations. In the CM model, there ared = 3 observation variables, and a true model which relies
on a weak conditional dependencex1 /⊥⊥x3|x2. [6] show thatif one keeps the independence as-
sumptionH0 thatx1⊥⊥x3|x2, this can lead to very high causal estimation errors3. We show that it is

3As measured by|E[x3|x2]− E[x3|do(x2)]|/|x2| [6].
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possible, through aCP, to trick statistics intokeepingH0 as well. In the following,Fs = {x3}. It is
shown in [6] thatx1⊥⊥x3|x2 iff the partial correlationρ(13)·2

.
= (ρ13−ρ12ρ23)/

√

(1− ρ212)(1− ρ223)
vanishes. Assumingρ(13)·2 is large enough in the dataset we have (so that we would rejectH0 from
observingS), we show how to reduce it through a sequence ofCPs, using a similar strategy as in
Theorem 10, the main difference being that we rely on block-class permutations. For anyς ∈ Sm,
notation3ς indicates column variable 3 shuffled. We assumeρ(13)·2 > 0 (the same analysis can be
done ifρ(13)·2 < 0).

Theorem 20 Suppose that there existsǫ > 0 such thatρ212 ≤ 1−ǫ andρ223ς ≤ 1−ǫ for anyς ∈ S∗
m.

Then there existsT > 0 and a sequence ofT elementary permutations inS∗
m such thatρ(13ς )·2 is

strictly decreasing in the sequence and meets at the endρ(13ς )·2 ≤ R with

R
.
= (1− ǫ)−1 · p+(1− p+) · (µ̃1 − ρ12 · µ̃2) · µ̃3 ,

andµ̃j
.
= (1/(2

√
vj)) ·

∑

y′ y
′
E(x,y)∼S[xj |y = y′].

Proof
The Theorem is a direct consequence of the following Lemma.

Lemma 21 Let cjk denote the covariance between columnsj andk, µb
l

.
= (1/mb)

∑

i:yi=b xil and
p

.
= m+/m. Suppose thatj ∈ Fa andk ∈ Fs. Then as long as

cjk > p(1− p) · (µ+
j − µ−

j ) · (µ+
k − µ−

k ) , (98)

there always existς ∈ S∗
m such thatρjkς < ρjk, wherekς denote column variablek shuffled

according toς in the correspondingCP.

Proof Let us denote for shortcj ∈ Rm thejth feature column. We have because of the fact that
µkς = µk andvkς = vk (v. being the variance):

ρjkς − ρjk =
1

m
√
vjvk

·
(
c⊤j (M ς − Im) ck

)
, (99)

whereM ς is the shuffling matrix of permutationς. Matrix M ς − Im has only four non-zero coordi-
nates: in(ℓ, ℓ) and(ℓ′, ℓ′) (both−1), and in(ℓ, ℓ′) and(ℓ′, ℓ) (both1), so we get:

ρjkς − ρjk =
1

m
√
vjvk

· (xℓj(xℓ′k − xℓk) + xℓ′j(xℓk − xℓ′k))

= − 1

m
√
vjvk

· ((xℓj − xℓ′j)(xℓk − xℓ′k)) . (100)

Hence,ρjkς < ρjk iff the sign ofxℓj − xℓ′j is the same as the sign ofxℓk − xℓ′k. Let πb(ℓ) the
predicateρjkς ≥ ρjk, for any elementary permutationς ∈ S∗

m that changesℓ to indexℓ′ of the same
classb (ς(ℓ) = ℓ′, ς(ℓ′) = ℓ). If πb(ℓ) is true, then, averaging over all such permutations, we obtain:

0 ≥ − 1

m
√
vjvk

· 1

mb

∑

ℓ′

(
(xb

ℓj − xb
ℓ′j)(x

b
ℓk − xb

ℓ′k)
)

= − 1

m
√
vjvk

·
(
xb
ℓjx

b
ℓk − xb

ℓjµ
b
k − xb

ℓkµ
b
j + µb

jk

)

= − 1

m
√
vjvk

·
(
cbjk + (xb

ℓj − µb
j)(x

b
ℓk − µb

k)
)

,
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i.e. we have:

(xb
ℓj − µb

j)(x
b
ℓk − µb

k) ≥ −cbjk . (101)

Assume now thatπb(ℓ) holds over anyℓ ∈ [mb]. As long ascbjk is strictly positive, we thus obtain,
averaging ineq. (101) over allℓ ∈ [mb],

cbjk
.
=

1

mb

∑

ℓ

(xb
ℓj − µb

j)(x
b
ℓk − µb

k)

≤ −cbjk
< 0 , (102)

a contradiction. Hence, as long ascbjk > 0, there must exist(ℓ, ℓ′) ∈ i
mb

2 such that the elementary
permutationς(ℓ) = ℓ′, ς(ℓ′) = ℓ satisfies

cbjkς < cbjk , (103)

and this holds forb ∈ {−,+}. Now remark that

cjk = pµ+
jk + (1− p)µ−

jk − (pµ+
j + (1− p)µ−

j )(pµ
+
k + (1− p)µ−

k )

= pc+jk + (1− p)c−jk + p(1− p)(µ+
j − µ−

j )(µ
+
k − µ−

k ) , (104)

and so as long as whicheverc+jk > 0 or c−jk > 0, we can always find an elementary permutation
that decreases the one chosen. When no more elementary permutations achieve that,cjk ≤ p(1 −
p)(µ+

j − µ−
j )(µ

+
k − µ−

k ), which yields the statement of the Lemma.

To prove the Theorem, remark that

ρ13ς − ρ12ρ23ς =
1√
v1v3

(

1

m
·
∑

i

(

xi1 −
c12
v2
· xi2

)

xς(i)3

)

−
(

µ1µ3√
v1v3

− c12
µ2µ3

v2
√
v1v3

)

=
1√
v1v3

(

1

m
·
∑

i

(

xi1 −
c12
v2
· xi2

)

xς(i)3 −
(

µ1 −
c12µ2

v2

)

µ3

)

(105)

We apply Lemma 21 to linearly transformed columnc′
.
= c1 − c12

v2
c2 and columnc3 and obtain

that as long as

ρ13 − ρ12ρ23 >
p(1− p)√

v1v3

(

(µ+
1 − µ−

1 )−
c12
v2

(µ+
2 − µ−

2 )

)

(µ+
3 − µ−

3 ) , (106)

there always exist a block-class elementary permutationς that is going to makeρ13ς − ρ12ρ23ς <
ρ13−ρ12ρ23. When no such permutation exist anymore, we have, lettingςT denote the composition
of all elementary permutations performed so far andς∗

.
= argmaxς∈S∗

m
ρ223ς ,

ρ13 − ρ12ρ23
√

1− ρ212
√

1− ρ223ςT
≤ ρ13 − ρ12ρ23

√

1− ρ212
√

1− ρ223ς∗

=
p(1− p)

√

v1v2 − c212
√

v2v3 − c223ς∗

·
(
v2(µ

+
1 − µ−

1 )− c12(µ
+
2 − µ−

2 )
)
(µ+

3 − µ−
3 )

=
p(1− p)

1− ǫ

(
µ+
1 − µ−

1√
v1

− ρ12 ·
µ+
2 − µ−

2√
v2

)

· µ
+
3 − µ−

3√
v3

(107)
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as long asc212 ≤ (1− ǫ)v1v2 andc223ς∗ ≤ (1− ǫ)v2v3. We just have to use the fact that

µ̃j =
µ+
j − µ−

j√
vj

(108)

using the main file notation to conclude (End of the proof of Theorem 20).

Remark that the proof also shows that the conditions to blow up the type-II error (Corollary 2.1 in
[6]) are not affected by theCP. To see that it is possible to still make the Type II error blow, up, in
the CM model, the Type II error can be made at leastK/v2 [6] where the coefficientK does not
depend onς ([6], Corollary 2.1). Sincev2 is also not altered by the permutations, the Type II error
can still be blown up following [6]’s construction.

We now show that the iterative process is actually not necessary if one has enough data: sam-
pling ς ∼ S∗

m jamsρ(13ς )·2 up to bounds competitive with Theorem 20 with high probability. Such
good concentration results also hold forHSIC [36].

Theorem 22 For anyδ > 0, providedm = Ω((1/δ) log(1/δ)), the uniform sampling ofς in S∗
m

satisfies

Pς∼S∗
m
[ρ(13ς )·2 ≤ R + δ] ≥ 1− δ ,

whereR is defined in Theorem 20.

Proof We detail first the sampling process ofς. It relies on the fundamental property that a
permutation uniquely factors as a product of disjoint cycles, and so a block-class permutationς
factors uniquely as two permutationsς+ and ς−, each of which acts in one of the two classes.
Therefore, sampling uniformly each ofς+ andς− results in an uniform sampling of a block-class
ς.

The Theorem stems from the following Lemma, whose notationsfollow Lemma 21.

Lemma 23 For anyq > 0, as long as

m = Ω

(
1

q
log

1

q

)

, (109)

there is probability≥ 1− q that a randomly chosen block-class permutationς shall bring

cjkς ∈
[
p(1− p)(µ+

j − µ−
j )(µ

+
k − µ−

k )− q, p(1− p)(µ+
j − µ−

j )(µ
+
k − µ−

k ) + q
]

. (110)

Proof Let S∗b
m ⊂ S∗

m denote the set of block-class permutations whose set of fixedpoints contains
all examples from class6= b1, ∀b ∈ {−,+}. We have

Eς∼S∗b
m

[
∑

l:yl=b

xb
ljx

b
ς(l)k

]

= mbµ
b
jµ

b
k ,

and since(1/mb)
∑

l:yl=b x
b
ljx

b
ς(l)k − µb

jµ
b
k = cbjkς , if we sample uniformly at randomς ∼ S∗b

m , then
we get from [5] (Proposition 1.1):

Pς∼S∗b
m
[|cbjkς | ≥ t] = Pς∼S∗b

m

[∣
∣
∣
∣
∣

∑

l:yl=b

xb
ljx

b
ς(l)k −mbµ

b
jµ

b
k

∣
∣
∣
∣
∣
≥ mbt

]

≤ 2 exp

(

− mbt
2

4µb
jµ

b
k + 2t

)

. (111)
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We want the right hand side to be no more than someδb; equivalently, we want

t2 −
(

2

mb
log

2

δb

)

t− 2

mb
log

2

δb
≥ 0 , (112)

which holds provided

t ≥ 2(1 + o(1))

mb
log

2

δb
, (113)

where the little-oh is measured wrtmb. Since a block-class permutation factors as two fully de-
termined permutations fromS∗+

m andS∗−
m , if we fix δ+ = δ− = δ/2, we get that if we sample

uniformly at random these two permutationsς+ ∼ S∗+
m andς− ∼ S∗−

m , then we shall have simulta-
neously

|cbjkς | ≤
2(1 + o(1))

mb
log

4

δ
, ∀b ∈ {−,+} , (114)

which implies for the factored permutationς,

|cjkς − p(1− p)(µ+
j − µ−

j )(µ
+
k − µ−

k )| ≤
∑

b

mb

m
· 2(1 + o(1))

mb

log
4

δ

=
2(1 + o(1))

m
log

4

δ
(115)

from eq. (104). Hence, if

m = Ω

(
1

δ
log

1

δ

)

, (116)

there will be probability≥ 1− δ thatcjkς is within additiveδ from p(1− p)(µ+
j − µ−

j )(µ
+
k − µ−

k ).

We get that with probability≥ 1− δ, a randomly chosen block-class permutationς shall make

ρ13ς − ρ12ρ23ς
√

1− ρ212
√

1− ρ223ς
≤ p(1− p)

1− ǫ

(
µ+
1 − µ−

1√
v1

− ρ12 ·
µ+
2 − µ−

2√
v2

)

· µ
+
3 − µ−

3√
v3

+ δ , (117)

and the Theorem is proven (End of the proof of Theorem 22).

7.3 Appendix — Experiments

7.3.1 Domains and setup

Domain characteristics are described in Table 3. In particular, the process for train/test split is there
given in detail for each dataset. Some domains deserve more comments.

Similarly to [16], we consider only two features of theabalonedatasets; those arerings (the
age) andlength, which are provably causally linked –agecauseslength–, and hence correlated.
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name m(∗) d source notes

digoxin 35 2 [7] features are cond. independent given label
glass 146 9 UCI

abalone-2D 200, 567 2 UCI, [16] subsample, {rings, length} predict diameter
synthetic 200 13 scikit-learn

heart 270 13 UCI
liver disorders 345 7 UCI, [23] predict mcv< 30th percentile, taskpair0034

ionosphere 351 34 UCI

auto+mpg 398 8 UCI, [23]
predict mpg< mean, taskpair0016
(feature vectors with missing values removed)

arrhythmia 452 279 UCI, [23] taskpair0023, missing values replaced by 0
breastw 683 10 UCI

australian 690 14 UCI

diabete(-2) 768 8 UCI
Pima domain (-2 = taskpair0038, [23],
half of the dataset used for training)

Table 3: Domains considered.(∗) When only one number appears in the column, 1/5 ofm was
hold out at random for test; when two numbers are present, thefirst is training set size, while the
second is test size, that is fixed by the dataset description.

We predict the attributediameter(reasonably caused byageas well); to turn this into a binary
classification problem, we classify if thediameteris above or below the average one. (We also
exclude abalone examples which have missingsexattribute.) For the experiments, we train with
200 examples and held out567, both picked at random. Thedigoxindomain [7] is already defined
by only two features,digoxinandurine, which are conditionally independent givencreatine. From
those, we predict if the level ofcreatine is above or below average. Domains Liver disorder,
Auto+MPG, Arrhythmia and Diabete are part of the benchmark of domains of [23].

Thesyntheticdataset is generated by the functiondatasets.make_classificationof
the scikit-learnpython library [31], with6 features,3 informative for the class prediction, and3
more that are linear combinations of the formers. The rational of this toy domain is to craft two
feature subspaces highly correlated.

All training sets are standardized, and the same transformation is then applied to the respec-
tive test sets. The partition of the feature space is defined by the first splitF = ⌊d/2⌋, and its
complement; features are taken in the order defined by the datasets.

Unless stated differently, models are trained withL2 regularisation byscikit-learn’s
linear_model.LogisticRegression. The hyper-parameterλ is optimized by 5-folds
cross validation on the grid{10−5, 10−4, . . . , 104}.

7.3.2 Explanation of the movie

Along with this SM comes a movie displaying the impact on thep-value ofDT, in the context of
the decrease of theHSIC. The movie shows 200 iterations ofDT on the Abalone2D domain, along
with the modification of the point cloud (classes are red / blue). Thep-value is indicated. Notice
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Figure 4: Crop of the movie (see text for explanation).

that is begins at value 0 up to 13 digits beforeDT starts. The two lines indicate the classifier learnt
over the current data (plain gold line) and compare with the initial classifier learnt over the data
before runningDT (dashed gold line). The big number (167 in Figure 4) is the iteration number.
Finally, the polygon displayed is the convex envelope of theinitial data.
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7.3.3 Complete experimental results
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Table 4: Results on domain Digoxin. Left: Data optimisation; right: HSIC reduction. Color codes
are the same on all plots. See text for details.
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Table 5: Results on domain Glass. Left: Data optimisation; right: HSIC reduction. Color codes are
the same on all plots. Color codes are the same on all plots. See text for details.
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Table 6: Results on domain Synthetic. Left: Data optimisation; right: HSIC reduction. Color codes
are the same on all plots. Color codes are the same on all plots. See text for details.
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Table 7: Results on domain Heart. Left: Data optimisation; right: HSIC reduction. Color codes are
the same on all plots. See text for details.
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Table 8: Results on domain Ionosphere. Left: Data optimisation; right: HSIC reduction. Color
codes are the same on all plots. See text for details.
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Table 9: Results on domain Abalone. Left: Data optimisation; right: HSIC reduction. Color codes
are the same on all plots. The scale of thep-value curve is not the same as in the main file: here,
its scale is the same as for theHSIC curve, which explains why it seems to be flat while the value
for the first iterations is the zero-machine and the values for the last exceed one per thousand. See
text for details.
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Table 10: Results on domain BreastWisc. Left: Data optimisation; right: HSIC reduction. Color
codes are the same on all plots. See text for details.
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Table 11: Results on domain Australian. Left: Data optimisation; right: HSIC reduction. Color
codes are the same on all plots. See text for details.
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Table 12: Results on domain Diabete_scale. Left: Data optimisation; right:HSIC reduction. Color
codes are the same on all plots. See text for details.
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Table 13: Number of odd cycles (excluding fixed points, normalized bym) for the data optimiza-
tion experiments in Table 1.
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7.3.4 Comparisons of block-class vs arbitrary permutations

We now compareDT as in Algorithm 1 to the one where we relax the constraint thatpermutations
must be block-class (implying the invariance of the mean operator). See Tables 14, 15. The results
are a clear advocacy for the constraint, as relaxing it brings poor results, from both theϕ-risk and
test error standpoints.
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Table 14: Comparison, for data optimisation, of algorithmDT in which elementary permutation
matrices are constrained to be block-class (left), andnot constrained to be block-class (right).
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Table 15: Comparison (cont’d), for data optimisation, of algorithm DT in which elementary per-
mutation matrices are constrained to be block-class (left), andnot constrained to be block-class
(right).
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